S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi
{"title":"PRINCIPAL FACTORS AND LATTICE MINIMA IN CUBIC FIELDS","authors":"S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi","doi":"10.2206/kyushujm.76.101","DOIUrl":null,"url":null,"abstract":"Let $\\mathit{k}=\\mathbb{Q}(\\sqrt[3]{d},\\zeta_3)$, where $d>1$ is a cube-free positive integer, $\\mathit{k}_0=\\mathbb{Q}(\\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\\zeta_3$, and $G=\\operatorname{Gal}(\\mathit{k}/\\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\\Theta=(\\theta_i)_{i\\in\\mathbb{Z}}$ of \\textit{lattice minima} in the underlying pure cubic subfield $L=\\mathbb{Q}(\\sqrt[3]{d})$ of $\\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\\alpha)\\in\\mathcal{P}_{\\mathit{k}}^G/\\mathcal{P}_{\\mathit{k}_0}$ among the lattice minima $\\Theta=(\\theta_i)_{i\\in\\mathbb{Z}}$ of the underlying pure cubic field $L=\\mathbb{Q}(\\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\\mathit{k}$ by means of Voronoi's algorithm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $\mathit{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)$, where $d>1$ is a cube-free positive integer, $\mathit{k}_0=\mathbb{Q}(\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\zeta_3$, and $G=\operatorname{Gal}(\mathit{k}/\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\Theta=(\theta_i)_{i\in\mathbb{Z}}$ of \textit{lattice minima} in the underlying pure cubic subfield $L=\mathbb{Q}(\sqrt[3]{d})$ of $\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\alpha)\in\mathcal{P}_{\mathit{k}}^G/\mathcal{P}_{\mathit{k}_0}$ among the lattice minima $\Theta=(\theta_i)_{i\in\mathbb{Z}}$ of the underlying pure cubic field $L=\mathbb{Q}(\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\mathit{k}$ by means of Voronoi's algorithm.