PRINCIPAL FACTORS AND LATTICE MINIMA IN CUBIC FIELDS

Pub Date : 2019-07-22 DOI:10.2206/kyushujm.76.101
S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi
{"title":"PRINCIPAL FACTORS AND LATTICE MINIMA IN CUBIC FIELDS","authors":"S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi","doi":"10.2206/kyushujm.76.101","DOIUrl":null,"url":null,"abstract":"Let $\\mathit{k}=\\mathbb{Q}(\\sqrt[3]{d},\\zeta_3)$, where $d>1$ is a cube-free positive integer, $\\mathit{k}_0=\\mathbb{Q}(\\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\\zeta_3$, and $G=\\operatorname{Gal}(\\mathit{k}/\\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\\Theta=(\\theta_i)_{i\\in\\mathbb{Z}}$ of \\textit{lattice minima} in the underlying pure cubic subfield $L=\\mathbb{Q}(\\sqrt[3]{d})$ of $\\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\\alpha)\\in\\mathcal{P}_{\\mathit{k}}^G/\\mathcal{P}_{\\mathit{k}_0}$ among the lattice minima $\\Theta=(\\theta_i)_{i\\in\\mathbb{Z}}$ of the underlying pure cubic field $L=\\mathbb{Q}(\\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\\mathit{k}$ by means of Voronoi's algorithm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathit{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)$, where $d>1$ is a cube-free positive integer, $\mathit{k}_0=\mathbb{Q}(\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\zeta_3$, and $G=\operatorname{Gal}(\mathit{k}/\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\Theta=(\theta_i)_{i\in\mathbb{Z}}$ of \textit{lattice minima} in the underlying pure cubic subfield $L=\mathbb{Q}(\sqrt[3]{d})$ of $\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\alpha)\in\mathcal{P}_{\mathit{k}}^G/\mathcal{P}_{\mathit{k}_0}$ among the lattice minima $\Theta=(\theta_i)_{i\in\mathbb{Z}}$ of the underlying pure cubic field $L=\mathbb{Q}(\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\mathit{k}$ by means of Voronoi's algorithm.
分享
查看原文
三次域中的主因子与格极小
设$\mathit{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)$,其中$d>1$是一个无立方体的正整数,$\mathi{k}_0=\mathbb{Q}(\zeta_3)$是包含单位原始立方根$\zeta_3$的分圆域,$G=\operatorname{Gal}(\mathit{k}/\mathit{k}_0)$。在我们的主要结果[2,Thm.1.1]中$d$的可能素数因子分解引起了关于$\mathit{k}$的底层纯三次子域$L=\mathbb{Q}(\sqrt[3]{d})$中\textit{lattice minimum}的链$\Theta=(\Theta_i)_。本工作的目的是给出原始模糊主理想$(\alpha)\in\mathcal的生成元出现的标准{P}_{\mathit{k}}^G/\mathcal{P}_{\mathit{k}_0}$在底层纯三次域$L=\mathbb{Q}(\sqrt[3]{d})$的格极小值$\Theta=。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信