The Theoretical Value for the Tip Radius of Cracks and Notches

IF 0.6 4区 工程技术 Q4 MECHANICS
Mechanika Pub Date : 2022-10-21 DOI:10.5755/j02.mech.31338
Goksel Saracoglu
{"title":"The Theoretical Value for the Tip Radius of Cracks and Notches","authors":"Goksel Saracoglu","doi":"10.5755/j02.mech.31338","DOIUrl":null,"url":null,"abstract":"In this paper, using Creager and Paris's blunt elliptical hole stress distribution area equation, it is applied to crack and circular hole shaped defects using the theoretical radius value, which equalizes the maximum stress at the defect tip in terms of value to fracture toughness. By providing value equality, critical fracture stresses of all defect dimensions and tensile strength of the material were determined with a single mechanical test data. Compared with the predictions of other methodologies, it was determined that the obtained data gave results closer to the experimental values.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.31338","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, using Creager and Paris's blunt elliptical hole stress distribution area equation, it is applied to crack and circular hole shaped defects using the theoretical radius value, which equalizes the maximum stress at the defect tip in terms of value to fracture toughness. By providing value equality, critical fracture stresses of all defect dimensions and tensile strength of the material were determined with a single mechanical test data. Compared with the predictions of other methodologies, it was determined that the obtained data gave results closer to the experimental values.
裂纹和缺口尖端半径的理论值
本文利用Creager和Paris的钝椭圆孔应力分布面积方程,将其应用于裂纹和圆孔形缺陷,使用理论半径值,使缺陷尖端的最大应力值与断裂韧性相等。通过提供数值相等,用单一的机械试验数据确定了所有缺陷尺寸的临界断裂应力和材料的抗拉强度。与其他方法的预测相比,确定所获得的数据给出的结果更接近实验值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信