{"title":"Symmetric differentials and Jets extension of L^2 holomorphic functions","authors":"Seungjae Lee, Aeryeong Seo","doi":"10.1512/iumj.2023.72.9405","DOIUrl":null,"url":null,"abstract":"Let $\\Sigma = \\mathbb B^n/\\Gamma$ be a compact complex hyperbolic space with torsion-free lattice $\\Gamma\\subset SU(n,1)$ and $\\Omega $ a quotient of $\\mathbb B^n \\times\\mathbb B^n$ with respect to the diagonal action of $\\Gamma$ which is a holomorphic $\\mathbb B^n$-fiber bundle over $\\Sigma$. The goal of this article is to investigate the relation between symmetric differentials of $\\Sigma$ and the weighted $L^2$ holomorphic functions on the exhaustions $\\Omega_\\epsilon$ of $\\Omega$. If there exists a holomorphic function on $\\Omega_\\epsilon$ on some $\\epsilon$, then there exists a symmetric differential on $\\Sigma$. Using this property, we show that $\\Sigma$ always has a symmetric differential of degree $N$ for any $N\\geq n+1$. Moreover for each symmetric differential over $\\Sigma$, we construct a weighted $L^2$ holomorphic function on $\\Omega_{1\\over \\sqrt{n}}$.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9405","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Let $\Sigma = \mathbb B^n/\Gamma$ be a compact complex hyperbolic space with torsion-free lattice $\Gamma\subset SU(n,1)$ and $\Omega $ a quotient of $\mathbb B^n \times\mathbb B^n$ with respect to the diagonal action of $\Gamma$ which is a holomorphic $\mathbb B^n$-fiber bundle over $\Sigma$. The goal of this article is to investigate the relation between symmetric differentials of $\Sigma$ and the weighted $L^2$ holomorphic functions on the exhaustions $\Omega_\epsilon$ of $\Omega$. If there exists a holomorphic function on $\Omega_\epsilon$ on some $\epsilon$, then there exists a symmetric differential on $\Sigma$. Using this property, we show that $\Sigma$ always has a symmetric differential of degree $N$ for any $N\geq n+1$. Moreover for each symmetric differential over $\Sigma$, we construct a weighted $L^2$ holomorphic function on $\Omega_{1\over \sqrt{n}}$.
设$\Sigma=\mathbb B^n/\Gamma$是一个紧致复双曲空间,其无扭格$\Gamma\子集SU(n,1)$和$\Omega$是$\mathbb B ^n\times\mathbb B^n$关于$\Gamma$的对角作用的商,$\Gamma$是$\Sigma$上的全纯$\mathbbB^n$-纤维束。本文的目的是研究$\Sigma$的对称微分与$\Omega_\epsilon$的穷举$\Omega上的加权$L^2$全纯函数之间的关系。如果在$\Omega_\epsilon$上存在一个全纯函数,则在$\Sigma$上存在对称微分。利用这个性质,我们证明了对于任何$N\geqn+1$,$\Sigma$总是具有次为$N$的对称微分。此外,对于$\Sigma$上的每个对称微分,我们构造了$\Omega_{1\over\sqrt{n}}$上的加权$L^2$全纯函数。