Physical Design Principles of Thermally Stable Multicomponent Nanocomposite Coatings

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
A. D. Korotaev, A. N. Tyumentsev
{"title":"Physical Design Principles of Thermally Stable Multicomponent Nanocomposite Coatings","authors":"A. D. Korotaev,&nbsp;A. N. Tyumentsev","doi":"10.1134/S1029959923020030","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses the use of multicomponent composites as advanced nanostructured coatings. Their composition and synthesis conditions allow a simultaneous nucleation of islands of different mutually insoluble phases, which limit the island growth. Components for the coatings are chosen so that, firstly, to form nitrides, carbides, oxides, and more complex compounds with a high enthalpy of formation. Secondly, to form insoluble copper and nickel in order to reduce differences in the elastic moduli of the substrate and coating, eliminate stress concentrators, and increase the fracture toughness of the surface layers. The phase-structural state and the elastic stress distribution in the coatings are investigated to assess the torsional lattice curvature and local internal stresses as one of the most important factors in increasing the coating microhardness to HV = 40 GPa. Two types of substructures were distinguished in the nanocoatings depending on the composition: a nanocomposite one with less than 20-nm crystals in the amorphous matrix, and a two-level substructure with grains of hundreds of nanometers fragmented into 10- to 20-nm crystals. High elastic and elastoplastic bending-torsion was observed in coatings of various types. Using Ti-Al-Si-Ni-Cr-Cu-C-O-N coatings as an example, we confirm the effectiveness of the proposed multicomponent coating design principles that provide high hardness, fracture toughness, and thermal stability.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923020030","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the use of multicomponent composites as advanced nanostructured coatings. Their composition and synthesis conditions allow a simultaneous nucleation of islands of different mutually insoluble phases, which limit the island growth. Components for the coatings are chosen so that, firstly, to form nitrides, carbides, oxides, and more complex compounds with a high enthalpy of formation. Secondly, to form insoluble copper and nickel in order to reduce differences in the elastic moduli of the substrate and coating, eliminate stress concentrators, and increase the fracture toughness of the surface layers. The phase-structural state and the elastic stress distribution in the coatings are investigated to assess the torsional lattice curvature and local internal stresses as one of the most important factors in increasing the coating microhardness to HV = 40 GPa. Two types of substructures were distinguished in the nanocoatings depending on the composition: a nanocomposite one with less than 20-nm crystals in the amorphous matrix, and a two-level substructure with grains of hundreds of nanometers fragmented into 10- to 20-nm crystals. High elastic and elastoplastic bending-torsion was observed in coatings of various types. Using Ti-Al-Si-Ni-Cr-Cu-C-O-N coatings as an example, we confirm the effectiveness of the proposed multicomponent coating design principles that provide high hardness, fracture toughness, and thermal stability.

Abstract Image

热稳定多组分纳米复合涂层的物理设计原理
本文讨论了多组分复合材料作为先进纳米结构涂层的应用。它们的组成和合成条件允许不同的互不溶相的岛同时成核,这限制了岛的生长。选择用于涂层的组分,以便首先形成具有高生成焓的氮化物、碳化物、氧化物和更复杂的化合物。其次,形成不溶性铜和镍,以减小基材和涂层弹性模量的差异,消除应力集中,增加表层的断裂韧性。研究了涂层的相结构状态和弹性应力分布,确定了扭转晶格曲率和局部内应力是镀层显微硬度提高到HV = 40 GPa的重要因素之一。根据组成的不同,纳米涂层可分为两种类型的子结构:一种是在非晶基体中含有小于20纳米晶体的纳米复合结构,另一种是由数百纳米颗粒破碎成10- 20纳米晶体的两级子结构。在各种类型的涂层中观察到高弹性和弹塑性弯曲扭转。以Ti-Al-Si-Ni-Cr-Cu-C-O-N涂层为例,我们证实了所提出的多组分涂层设计原则的有效性,该原则提供了高硬度、高断裂韧性和高热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信