Two-barriers reflected backward doubly SDEs beyond right continuity

IF 0.3 Q4 STATISTICS & PROBABILITY
M. Marzougue
{"title":"Two-barriers reflected backward doubly SDEs beyond right continuity","authors":"M. Marzougue","doi":"10.1515/rose-2022-2089","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we formulate a specific kind of reflected backward doubly stochastic differential equation with two barriers not necessarily right continuous. We prove the existence and uniqueness of the solution under Mokobodzki’s condition on the barriers and a Lipschitz driver through a Picard’s iteration method in an appropriate Banach space. Moreover, we show that the solution of such equations is characterized in terms of the value function of an extension of the corresponding stochastic Dynkin game.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"271 - 293"},"PeriodicalIF":0.3000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we formulate a specific kind of reflected backward doubly stochastic differential equation with two barriers not necessarily right continuous. We prove the existence and uniqueness of the solution under Mokobodzki’s condition on the barriers and a Lipschitz driver through a Picard’s iteration method in an appropriate Banach space. Moreover, we show that the solution of such equations is characterized in terms of the value function of an extension of the corresponding stochastic Dynkin game.
双障碍反映了超越右连续性的反向双SDEs
摘要本文给出了一类不一定是右连续的双障碍反射后向双随机微分方程。在适当的Banach空间中,利用Picard迭代法证明了在障碍和Lipschitz驱动下Mokobodzki条件下解的存在唯一性。此外,我们证明了这类方程的解是用相应的随机Dynkin对策的扩展的值函数来表征的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信