Shattering versus metastability in spin glasses

IF 3.1 1区 数学 Q1 MATHEMATICS
Gérard Ben Arous, Aukosh Jagannath
{"title":"Shattering versus metastability in spin glasses","authors":"Gérard Ben Arous,&nbsp;Aukosh Jagannath","doi":"10.1002/cpa.22133","DOIUrl":null,"url":null,"abstract":"<p>Our goal in this work is to better understand the relationship between replica symmetry breaking, shattering, and metastability. To this end, we study the static and dynamic behaviour of spherical pure <i>p</i>-spin glasses above the replica symmetry breaking temperature <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>s</mi>\n </msub>\n <annotation>$T_{s}$</annotation>\n </semantics></math>. In this regime, we find that there are at least two distinct temperatures related to non-trivial behaviour. First we prove that there is a regime of temperatures in which the spherical <i>p</i>-spin model exhibits a shattering phase. Our results holds in a regime above but near <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>s</mi>\n </msub>\n <annotation>$T_s$</annotation>\n </semantics></math>. We then find that metastable states exist up to an even higher temperature <math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mrow>\n <mi>B</mi>\n <mi>B</mi>\n <mi>M</mi>\n </mrow>\n </msub>\n <annotation>$T_{BBM}$</annotation>\n </semantics></math> as predicted by Barrat–Burioni–Mézard which is expected to be higher than the phase boundary for the shattering phase <math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>d</mi>\n </msub>\n <mo>&lt;</mo>\n <msub>\n <mi>T</mi>\n <mrow>\n <mi>B</mi>\n <mi>B</mi>\n <mi>M</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$T_d &lt;T_{BBM}$</annotation>\n </semantics></math>. We develop this work by first developing a Thouless–Anderson–Palmer decomposition which builds on the work of Subag. We then present a series of questions and conjectures regarding the sharp phase boundaries for shattering and slow mixing.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"139-176"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22133","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22133","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Our goal in this work is to better understand the relationship between replica symmetry breaking, shattering, and metastability. To this end, we study the static and dynamic behaviour of spherical pure p-spin glasses above the replica symmetry breaking temperature T s $T_{s}$ . In this regime, we find that there are at least two distinct temperatures related to non-trivial behaviour. First we prove that there is a regime of temperatures in which the spherical p-spin model exhibits a shattering phase. Our results holds in a regime above but near T s $T_s$ . We then find that metastable states exist up to an even higher temperature T B B M $T_{BBM}$ as predicted by Barrat–Burioni–Mézard which is expected to be higher than the phase boundary for the shattering phase T d < T B B M $T_d <T_{BBM}$ . We develop this work by first developing a Thouless–Anderson–Palmer decomposition which builds on the work of Subag. We then present a series of questions and conjectures regarding the sharp phase boundaries for shattering and slow mixing.

自旋玻璃中的破碎与亚稳态
我们在这项工作中的目标是更好地理解复制对称性破坏、破碎和亚稳态之间的关系。为此,我们研究了球形纯$p$-自旋玻璃在复制对称性破坏温度$T_{s}$以上的静态和动态行为。在这种情况下,我们发现至少有两种不同的温度与非平凡的行为有关。首先,我们证明了存在一个温度范围,其中球形$p$-自旋模型表现出破碎阶段。我们的结果适用于高于但接近$T_s$的制度。然后,我们发现亚稳态存在于甚至更高的温度$T_{BBM}$,正如Barrat-Burioni-M'zard预测的那样,该温度预计高于破碎相$T_d<T_{BBM}$的相边界。我们通过首先开发Thouless-Anderson-Palmer分解来开发这项工作,该分解建立在Subag的工作之上。然后,我们提出了一系列关于破碎和缓慢混合的尖锐相边界的问题和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信