3D cell morphology detection by association for embryo heart morphogenesis.

Biological imaging Pub Date : 2022-04-22 eCollection Date: 2022-01-01 DOI:10.1017/S2633903X22000022
Rituparna Sarkar, Daniel Darby, Sigolène Meilhac, Jean-Christophe Olivo-Marin
{"title":"3D cell morphology detection by association for embryo heart morphogenesis.","authors":"Rituparna Sarkar, Daniel Darby, Sigolène Meilhac, Jean-Christophe Olivo-Marin","doi":"10.1017/S2633903X22000022","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in tissue engineering for cardiac regenerative medicine require cellular-level understanding of the mechanism of cardiac muscle growth during embryonic developmental stage. Computational methods to automatize cell segmentation in 3D and deliver accurate, quantitative morphology of cardiomyocytes, are imperative to provide insight into cell behavior underlying cardiac tissue growth. Detecting individual cells from volumetric images of dense tissue, poised with low signal-to-noise ratio and severe intensity in homogeneity, is a challenging task. In this article, we develop a robust segmentation tool capable of extracting cellular morphological parameters from 3D multifluorescence images of murine heart, captured via light-sheet microscopy. The proposed pipeline incorporates a neural network for 2D detection of nuclei and cell membranes. A graph-based global association employs the 2D nuclei detections to reconstruct 3D nuclei. A novel optimization embedding the network flow algorithm in an alternating direction method of multipliers is proposed to solve the global object association problem. The associated 3D nuclei serve as the initialization of an active mesh model to obtain the 3D segmentation of individual myocardial cells. The efficiency of our method over the state-of-the-art methods is observed via various qualitative and quantitative evaluation.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2633903X22000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in tissue engineering for cardiac regenerative medicine require cellular-level understanding of the mechanism of cardiac muscle growth during embryonic developmental stage. Computational methods to automatize cell segmentation in 3D and deliver accurate, quantitative morphology of cardiomyocytes, are imperative to provide insight into cell behavior underlying cardiac tissue growth. Detecting individual cells from volumetric images of dense tissue, poised with low signal-to-noise ratio and severe intensity in homogeneity, is a challenging task. In this article, we develop a robust segmentation tool capable of extracting cellular morphological parameters from 3D multifluorescence images of murine heart, captured via light-sheet microscopy. The proposed pipeline incorporates a neural network for 2D detection of nuclei and cell membranes. A graph-based global association employs the 2D nuclei detections to reconstruct 3D nuclei. A novel optimization embedding the network flow algorithm in an alternating direction method of multipliers is proposed to solve the global object association problem. The associated 3D nuclei serve as the initialization of an active mesh model to obtain the 3D segmentation of individual myocardial cells. The efficiency of our method over the state-of-the-art methods is observed via various qualitative and quantitative evaluation.

胚胎心脏形态发生的三维细胞形态学关联检测
摘要心脏再生医学组织工程的进展需要细胞水平上了解胚胎发育阶段心肌生长的机制。实现3D细胞分割自动化并提供准确、定量的心肌细胞形态的计算方法,对于深入了解心脏组织生长背后的细胞行为至关重要。从致密组织的体积图像中检测单个细胞是一项具有挑战性的任务,该图像具有低信噪比和严重的同质性。在这篇文章中,我们开发了一种强大的分割工具,能够从通过光片显微镜捕获的小鼠心脏的3D多荧光图像中提取细胞形态参数。所提出的管道结合了用于细胞核和细胞膜的2D检测的神经网络。基于图的全局关联采用2D核检测来重建3D核。为了解决全局对象关联问题,提出了一种新的优化方法,将网络流算法嵌入到乘法器的交替方向方法中。相关联的3D细胞核用作主动网格模型的初始化,以获得单个心肌细胞的3D分割。通过各种定性和定量评估,观察到我们的方法相对于最先进方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信