{"title":"Optimal control for a bone metastasis with radiotherapy model using a linear objective functional","authors":"Ariel Camacho, Enrique Diaz-Ocampo, S. Jerez","doi":"10.1051/mmnp/2022038","DOIUrl":null,"url":null,"abstract":"Radiation is known to cause genetic damage to highly proliferative cells such as cancer cells. However, the radiotherapy effects to bone cells is not completely known. In this work we present a mathematical modeling framework to test hypotheses related to the radiation-induced effects on bone metastasis. Thus, we pose an optimal control problem based on a Komarova model describing the interactions between cancer cells and bone cells at a single site of bone remodeling. The radiotherapy treatment is included in the form of a functional which minimizes the use of radiation using a penalty function. Moreover, we are interested to model the 'on' and the 'off' time states of the radiation schedules; so we propose an optimal control problem with a L1-type objective functional.\n\nBang-bang or singular arc solutions are the obtained optimal control solutions. We characterize both solutions types and explicitly give necessary optimality conditions for them. We present numerical simulations to analyze the different possible radiation effects on the bone and cancer cells. We also evaluate the more significant parameters to shift from a bang-bang solution to a singular arc solution and vice versa. Additionally, we study a fractionated radiotherapy model.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Radiation is known to cause genetic damage to highly proliferative cells such as cancer cells. However, the radiotherapy effects to bone cells is not completely known. In this work we present a mathematical modeling framework to test hypotheses related to the radiation-induced effects on bone metastasis. Thus, we pose an optimal control problem based on a Komarova model describing the interactions between cancer cells and bone cells at a single site of bone remodeling. The radiotherapy treatment is included in the form of a functional which minimizes the use of radiation using a penalty function. Moreover, we are interested to model the 'on' and the 'off' time states of the radiation schedules; so we propose an optimal control problem with a L1-type objective functional.
Bang-bang or singular arc solutions are the obtained optimal control solutions. We characterize both solutions types and explicitly give necessary optimality conditions for them. We present numerical simulations to analyze the different possible radiation effects on the bone and cancer cells. We also evaluate the more significant parameters to shift from a bang-bang solution to a singular arc solution and vice versa. Additionally, we study a fractionated radiotherapy model.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.