Yen-Hsien Lee, Chih-Ping Wei, P. H. Hu, T. Cheng, Ci-Wei Lan
{"title":"Small Clues Tell: a Collaborative Expansion Approach for Effective Content-Based Recommendations","authors":"Yen-Hsien Lee, Chih-Ping Wei, P. H. Hu, T. Cheng, Ci-Wei Lan","doi":"10.1080/10919392.2020.1718056","DOIUrl":null,"url":null,"abstract":"ABSTRACT Content-based recommendation techniques usually require a large number of training examples for model construction, which however may not always be available in many real-world scenarios. To address the training data availability constraint common to the content-based approach, we develop a collaborative expansion-based approach to expand the size of training examples, which could lead to improved content-based recommendations. We use a book rating data set collected from Amazon to evaluate our proposed method and compare its performance against those of two salient benchmark techniques. The results show that our method outperforms the benchmark techniques consistently and significantly. Our method expands the size of training examples for a focal customer by leveraging the available preferences of his or her referent group, and thereby better supports personalized recommendations than existing techniques that solely follow content-based or collaborative filtering, without incurring costs to identify, collect, and analyze additional information. This study reveals the value and feasibility of collaborative expansion as a viable means to increase training size for the focal customer and thus address the training data availability constraint that seriously hinders the performance of content-based recommender systems.","PeriodicalId":54777,"journal":{"name":"Journal of Organizational Computing and Electronic Commerce","volume":"30 1","pages":"111 - 128"},"PeriodicalIF":2.0000,"publicationDate":"2020-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10919392.2020.1718056","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational Computing and Electronic Commerce","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/10919392.2020.1718056","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT Content-based recommendation techniques usually require a large number of training examples for model construction, which however may not always be available in many real-world scenarios. To address the training data availability constraint common to the content-based approach, we develop a collaborative expansion-based approach to expand the size of training examples, which could lead to improved content-based recommendations. We use a book rating data set collected from Amazon to evaluate our proposed method and compare its performance against those of two salient benchmark techniques. The results show that our method outperforms the benchmark techniques consistently and significantly. Our method expands the size of training examples for a focal customer by leveraging the available preferences of his or her referent group, and thereby better supports personalized recommendations than existing techniques that solely follow content-based or collaborative filtering, without incurring costs to identify, collect, and analyze additional information. This study reveals the value and feasibility of collaborative expansion as a viable means to increase training size for the focal customer and thus address the training data availability constraint that seriously hinders the performance of content-based recommender systems.
期刊介绍:
The aim of the Journal of Organizational Computing and Electronic Commerce (JOCEC) is to publish quality, fresh, and innovative work that will make a difference for future research and practice rather than focusing on well-established research areas.
JOCEC publishes original research that explores the relationships between computer/communication technology and the design, operations, and performance of organizations. This includes implications of the technologies for organizational structure and dynamics, technological advances to keep pace with changes of organizations and their environments, emerging technological possibilities for improving organizational performance, and the many facets of electronic business.
Theoretical, experimental, survey, and design science research are all welcome and might look at:
• E-commerce
• Collaborative commerce
• Interorganizational systems
• Enterprise systems
• Supply chain technologies
• Computer-supported cooperative work
• Computer-aided coordination
• Economics of organizational computing
• Technologies for organizational learning
• Behavioral aspects of organizational computing.