Applying an equivalent free settling ratio to enhance ferro-magnetic and para-magnetic particles’ separation efficiency using the influence of a magnetic field aligned with gravity

IF 0.9 Q3 MINING & MINERAL PROCESSING
H. Dehghani, Mohammad Mehdi Salarirad, Hosein Asli
{"title":"Applying an equivalent free settling ratio to enhance ferro-magnetic and para-magnetic particles’ separation efficiency using the influence of a magnetic field aligned with gravity","authors":"H. Dehghani, Mohammad Mehdi Salarirad, Hosein Asli","doi":"10.1080/25726641.2021.1999196","DOIUrl":null,"url":null,"abstract":"ABSTRACT Settling behaviour of particles in aqueous mediums depends on the resultant force acting on them. This force normally is the resultant of gravity, buoyancy and drag forces. Therefore, the settling velocity of coarse and light particles is very close to that of fine but dense particles. This fact is the major cause of poor beneficiation of fine valuable minerals in gravitational separation devices like spirals. So, implementing of an external force such as magnetic force may well improve the beneficiation of such particles. Theoretical analysis of terminal settling velocity (TSV) of particles shows that a magnetic field aligned with gravity can increase TSV of minerals with magnetic properties which in turn results in higher free settling ratios between magnetic and non-magnetic particles. In this regard, an innovative laboratory device was designed, fabricated and used to better understand the simultaneous effects of gravity and a magnetic force aligned with it.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"131 1","pages":"320 - 329"},"PeriodicalIF":0.9000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2021.1999196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Settling behaviour of particles in aqueous mediums depends on the resultant force acting on them. This force normally is the resultant of gravity, buoyancy and drag forces. Therefore, the settling velocity of coarse and light particles is very close to that of fine but dense particles. This fact is the major cause of poor beneficiation of fine valuable minerals in gravitational separation devices like spirals. So, implementing of an external force such as magnetic force may well improve the beneficiation of such particles. Theoretical analysis of terminal settling velocity (TSV) of particles shows that a magnetic field aligned with gravity can increase TSV of minerals with magnetic properties which in turn results in higher free settling ratios between magnetic and non-magnetic particles. In this regard, an innovative laboratory device was designed, fabricated and used to better understand the simultaneous effects of gravity and a magnetic force aligned with it.
应用等效自由沉降比,利用与重力对齐的磁场影响提高铁磁和准磁颗粒的分离效率
颗粒在水介质中的沉降行为取决于作用在它们身上的合力。这种力通常是重力、浮力和阻力的合力。因此,粗、轻颗粒的沉降速度与细、密颗粒的沉降速度非常接近。这是螺旋等重力分选装置中细粒有价矿物选矿效果差的主要原因。因此,施加磁力等外力可以很好地改善这类颗粒的选矿。对颗粒终端沉降速度(TSV)的理论分析表明,与重力方向一致的磁场可以提高磁性矿物的TSV,从而提高磁性和非磁性颗粒之间的自由沉降率。在这方面,一个创新的实验室装置被设计、制造和使用,以更好地理解重力和与之对齐的磁力的同时效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信