The number of maximal subgroups and probabilistic generation of finite groups

IF 0.7 Q2 MATHEMATICS
Adolfo Ballester Bolinches, R. Esteban-Romero, P. Jiménez-Seral, H. Meng
{"title":"The number of maximal subgroups and probabilistic generation of finite groups","authors":"Adolfo Ballester Bolinches, R. Esteban-Romero, P. Jiménez-Seral, H. Meng","doi":"10.22108/IJGT.2019.114469.1521","DOIUrl":null,"url":null,"abstract":"In this survey we present some significant bounds for the‎ ‎number of maximal subgroups of a given index of a finite group‎. ‎As a‎ ‎consequence‎, ‎new bounds for the number of random‎ ‎generators needed to generate a finite $d$-generated group with high‎ ‎probability which are significantly tighter than the ones obtained in‎ ‎the paper of Jaikin-Zapirain and Pyber (Random generation of finite‎ ‎and profinite groups and group enumeration‎, ‎emph{Ann. Math.}‎, ‎textbf{183} (2011) 769--814) are obtained‎. ‎The results of‎ ‎Jaikin-Zapirain and Pyber‎, ‎as well as other results of Lubotzky‎, ‎Detomi‎, ‎and Lucchini‎, ‎appear as particular cases of our theorems‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"9 1","pages":"31-42"},"PeriodicalIF":0.7000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2019.114469.1521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this survey we present some significant bounds for the‎ ‎number of maximal subgroups of a given index of a finite group‎. ‎As a‎ ‎consequence‎, ‎new bounds for the number of random‎ ‎generators needed to generate a finite $d$-generated group with high‎ ‎probability which are significantly tighter than the ones obtained in‎ ‎the paper of Jaikin-Zapirain and Pyber (Random generation of finite‎ ‎and profinite groups and group enumeration‎, ‎emph{Ann. Math.}‎, ‎textbf{183} (2011) 769--814) are obtained‎. ‎The results of‎ ‎Jaikin-Zapirain and Pyber‎, ‎as well as other results of Lubotzky‎, ‎Detomi‎, ‎and Lucchini‎, ‎appear as particular cases of our theorems‎.
极大子群的个数与有限群的概率生成
在这个研究中,我们给出了有限群的给定索引的极大子群数目的一些有意义的界。作为一个结果,生成具有高概率的有限d生成群所需的随机生成数的新边界明显严格于Jaikin-Zapirain和Pyber的论文(有限群和无限群的随机生成和群枚举)中得到的边界。数学。},} textbf{183}(2011) 769—814)。Jaikin-Zapirain和Pyber的结果,以及Lubotzky、Detomi和Lucchini的其他结果,作为我们的定理的特殊情况出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信