Dynamics of a rank-one perturbation of a Hermitian matrix

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Guillaume Dubach, L'aszl'o ErdHos
{"title":"Dynamics of a rank-one perturbation of a Hermitian matrix","authors":"Guillaume Dubach, L'aszl'o ErdHos","doi":"10.1214/23-ECP516","DOIUrl":null,"url":null,"abstract":"We study the eigenvalue trajectories of a time dependent matrix $ G_t = H+i t vv^*$ for $t \\geq 0$, where $H$ is an $N \\times N$ Hermitian random matrix and $v$ is a unit vector. In particular, we establish that with high probability, an outlier can be distinguished at all times $t>1+N^{-1/3+\\epsilon}$, for any $\\epsilon>0$. The study of this natural process combines elements of Hermitian and non-Hermitian analysis, and illustrates some aspects of the intrinsic instability of (even weakly) non-Hermitian matrices.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ECP516","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

We study the eigenvalue trajectories of a time dependent matrix $ G_t = H+i t vv^*$ for $t \geq 0$, where $H$ is an $N \times N$ Hermitian random matrix and $v$ is a unit vector. In particular, we establish that with high probability, an outlier can be distinguished at all times $t>1+N^{-1/3+\epsilon}$, for any $\epsilon>0$. The study of this natural process combines elements of Hermitian and non-Hermitian analysis, and illustrates some aspects of the intrinsic instability of (even weakly) non-Hermitian matrices.
厄米矩阵的一阶微扰动力学
我们研究了$t\geq0$的时间相关矩阵$G_t=H+itvv^*$的特征值轨迹,其中$H$是$N\timesN$Hermitian随机矩阵,$v$是单位向量。特别地,我们确定,对于任何$\epsilon>0$,在任何时候$t>1+N^{-1/3+\epsilon}$都可以以高概率区分异常值。对这一自然过程的研究结合了埃尔米特和非埃尔米特分析的元素,并说明了(甚至是弱)非埃尔米特矩阵的内在不稳定性的一些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信