Conical $SL(3)$ foams

IF 0.6 2区 数学 Q3 MATHEMATICS
M. Khovanov, Louis-Hadrien Robert
{"title":"Conical $SL(3)$ foams","authors":"M. Khovanov, Louis-Hadrien Robert","doi":"10.4171/jca/61","DOIUrl":null,"url":null,"abstract":"In the unoriented SL(3) foam theory, singular vertices are generic singularities of two-dimensional complexes. Singular vertices have neighbourhoods homeomorphic to cones over the one-skeleton of the tetrahedron, viewed as a trivalent graph on the two-sphere. In this paper we consider foams with singular vertices with neighbourhoods homeomorphic to cones over more general planar trivalent graphs. These graphs are subject to suitable conditions on their Kempe equivalence Tait coloring classes and include the dodecahedron graph. In this modification of the original homology theory it is straightforward to show that modules associated to the dodecahedron graph are free of rank 60, which is still an open problem for the original unoriented SL(3) foam theory.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/61","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In the unoriented SL(3) foam theory, singular vertices are generic singularities of two-dimensional complexes. Singular vertices have neighbourhoods homeomorphic to cones over the one-skeleton of the tetrahedron, viewed as a trivalent graph on the two-sphere. In this paper we consider foams with singular vertices with neighbourhoods homeomorphic to cones over more general planar trivalent graphs. These graphs are subject to suitable conditions on their Kempe equivalence Tait coloring classes and include the dodecahedron graph. In this modification of the original homology theory it is straightforward to show that modules associated to the dodecahedron graph are free of rank 60, which is still an open problem for the original unoriented SL(3) foam theory.
锥形$SL(3)$泡沫
在无向SL(3)泡沫理论中,奇异顶点是二维复形的一般奇点。奇异顶点在四面体的一个骨架上具有同胚于圆锥的邻域,被视为两个球体上的三价图。在本文中,我们考虑在更一般的平面三价图上具有邻域同胚于锥的奇异顶点的泡沫。这些图在它们的Kempe等价Tait染色类上受到适当的条件的约束,并且包括十二面体图。在对原始同调理论的这种修改中,可以直接证明与十二面体图相关的模没有秩60,这对于原始的无向SL(3)泡沫理论来说仍然是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信