K. E. Issaoui, N. Senhaji, A. Wieme, J. Abrini, E. Khay
{"title":"Probiotic Properties and Physicochemical Potential of Lactic Acid Bacteria Isolated from Moroccan Table Olives","authors":"K. E. Issaoui, N. Senhaji, A. Wieme, J. Abrini, E. Khay","doi":"10.18502/jfqhc.9.3.11155","DOIUrl":null,"url":null,"abstract":"Background: Lactic Acid Bacteria are a group of Gram-positive bacteria which are widely used in the food industry as organic ferments called starter cultures. In this study, Enterococcus faecium, Leuconostoc mesenteroides, Lactococcus lactis, Weissella paramesenteroides, and Lactiplantibacillus plantarumisolated from Moroccan table olives were tested for their acquisition of probiotic and technological properties. \nMethods: The 5 strains were previously isolated from table olives in 2017. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer (MALDI-TOF MS) and intergenic space sequencing were used for molecular identification. Following that, probiotic and physicochemical properties were evaluated, including growth at different pH levels (2, 3, and 10), temperatures (7, 45, and 50 °C), and sodium chloride (NaCl) concentrations (6.5 and 18% m/v). Antibacterial activity was tested out against Gram-positive and Gram-negatives bacteria. \nResults: The 5 strains (E. faecium 168, L. lactis 9, L. plantarum 11, L. mesenteroides 62, and W. paramesenteroides36) showed an ability to grow at low temperatures (7 °C). L. lactis 9 and L. plantarum 11 showed higher acid (pH 2) and salt (18% NaCl) tolerances. In addition, L. lactis 9 and L. plantarum 11 exhibited the highest level of free radical scavenging activity after 48 h of incubation, respectively). L. plantarum 11 and E. faecium 168 showed the highest antibacterial capacity. However, E. faecium 168 and W. paramesenteroides 36 demonstrated better and more rapid acid production capabilities. \nConclusion: L. plantarum 11, E. faecium 168, and W. paramesenteroides 36 were considered the best candidates as probiotic cultures for further in vivo studies and functional food product development.","PeriodicalId":37437,"journal":{"name":"Journal of Food Quality and Hazards Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality and Hazards Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jfqhc.9.3.11155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lactic Acid Bacteria are a group of Gram-positive bacteria which are widely used in the food industry as organic ferments called starter cultures. In this study, Enterococcus faecium, Leuconostoc mesenteroides, Lactococcus lactis, Weissella paramesenteroides, and Lactiplantibacillus plantarumisolated from Moroccan table olives were tested for their acquisition of probiotic and technological properties.
Methods: The 5 strains were previously isolated from table olives in 2017. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometer (MALDI-TOF MS) and intergenic space sequencing were used for molecular identification. Following that, probiotic and physicochemical properties were evaluated, including growth at different pH levels (2, 3, and 10), temperatures (7, 45, and 50 °C), and sodium chloride (NaCl) concentrations (6.5 and 18% m/v). Antibacterial activity was tested out against Gram-positive and Gram-negatives bacteria.
Results: The 5 strains (E. faecium 168, L. lactis 9, L. plantarum 11, L. mesenteroides 62, and W. paramesenteroides36) showed an ability to grow at low temperatures (7 °C). L. lactis 9 and L. plantarum 11 showed higher acid (pH 2) and salt (18% NaCl) tolerances. In addition, L. lactis 9 and L. plantarum 11 exhibited the highest level of free radical scavenging activity after 48 h of incubation, respectively). L. plantarum 11 and E. faecium 168 showed the highest antibacterial capacity. However, E. faecium 168 and W. paramesenteroides 36 demonstrated better and more rapid acid production capabilities.
Conclusion: L. plantarum 11, E. faecium 168, and W. paramesenteroides 36 were considered the best candidates as probiotic cultures for further in vivo studies and functional food product development.
期刊介绍:
Journal of Food Quality and Hazards Control (J. Food Qual. Hazards Control) is an international peer-reviewed quarterly journal that aims at publishing of high quality articles involved in food quality, food hygiene, food safety, and food control which scientists from all over the world may submit their manuscript. This academic journal aims to improve international exchange of new findings and recent developments in all aspects of agricultural and biological sciences. This free of charge journal is published in both online and print forms and welcomes the manuscripts that fulfill the general criteria of novelty and scientific importance. Among the most significant objectives of Journal of Food Quality and Hazards Control are to ensure that the articles reflect a wide range of topics regarding journal scopes; to do a fair, scientific, fast, as well as high quality peer-review process; to provide a wide and diverse geographical coverage of articles around the world; and to publish the articles having a trustable resource of scientific information for the audiences. The types of acceptable submissions include original article, review article, short communication, letter to the editor, case report, editorial, as well as book review. Journal of Food Quality and Hazards Control is an official journal of Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.