Automata and one-dimensional TQFTs with defects

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paul Gustafson, Mee Seong Im, Remy Kaldawy, Mikhail Khovanov, Zachary Lihn
{"title":"Automata and one-dimensional TQFTs with defects","authors":"Paul Gustafson,&nbsp;Mee Seong Im,&nbsp;Remy Kaldawy,&nbsp;Mikhail Khovanov,&nbsp;Zachary Lihn","doi":"10.1007/s11005-023-01701-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explains how any nondeterministic automaton for a regular language <i>L</i> gives rise to a one-dimensional oriented topological quantum field theory (TQFT) with inner endpoints and zero-dimensional defects labeled by letters of the alphabet for <i>L</i>. The TQFT is defined over the Boolean semiring <span>\\(\\mathbb {B}\\)</span>. Different automata for a fixed language <i>L</i> produce TQFTs that differ by their values on decorated circles, while the values on decorated intervals are described by the language <i>L</i>. The language <i>L</i> and the TQFT associated with an automaton can be given a path integral interpretation. In this TQFT, the state space of a one-point 0-manifold is a free module over <span>\\(\\mathbb {B}\\)</span> with the basis of states of the automaton. Replacing a free module by a finite projective <span>\\(\\mathbb {B}\\)</span>-module <i>P</i> allows to generalize automata and this type of TQFT to a structure where defects act on open subsets of a finite topological space. Intersection of open subsets induces a multiplication on <i>P</i> allowing to extend the TQFT to a TQFT for one-dimensional foams (oriented graphs with defects modulo a suitable equivalence relation). A linear version of these constructions is also explained, with the Boolean semiring replaced by a commutative ring.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"113 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-023-01701-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explains how any nondeterministic automaton for a regular language L gives rise to a one-dimensional oriented topological quantum field theory (TQFT) with inner endpoints and zero-dimensional defects labeled by letters of the alphabet for L. The TQFT is defined over the Boolean semiring \(\mathbb {B}\). Different automata for a fixed language L produce TQFTs that differ by their values on decorated circles, while the values on decorated intervals are described by the language L. The language L and the TQFT associated with an automaton can be given a path integral interpretation. In this TQFT, the state space of a one-point 0-manifold is a free module over \(\mathbb {B}\) with the basis of states of the automaton. Replacing a free module by a finite projective \(\mathbb {B}\)-module P allows to generalize automata and this type of TQFT to a structure where defects act on open subsets of a finite topological space. Intersection of open subsets induces a multiplication on P allowing to extend the TQFT to a TQFT for one-dimensional foams (oriented graphs with defects modulo a suitable equivalence relation). A linear version of these constructions is also explained, with the Boolean semiring replaced by a commutative ring.

Abstract Image

自动机与有缺陷的一维TQFT
本文解释了正则语言L的任何不确定性自动机如何产生具有L的内端点和零维缺陷的一维定向拓扑量子场论(TQFT)。TQFT在布尔半环\(\mathbb {B}\)上定义。固定语言L的不同自动机产生的TQFT在装饰圆上的值不同,而装饰区间上的值由语言L描述。语言L和与自动机相关的TQFT可以给出路径积分解释。在这个TQFT中,零点流形的状态空间是\(\mathbb {B}\)上的一个自由模,具有自动机的状态基。用有限射影\(\mathbb {B}\) -模P代替自由模,允许将自动机和这种类型的TQFT推广到缺陷作用于有限拓扑空间的开放子集的结构。开放子集的交集引起P上的乘法,允许将TQFT扩展到一维泡沫(具有缺陷的定向图模一个合适的等价关系)的TQFT。还解释了这些结构的线性版本,用交换环代替布尔半环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信