Asymptotic Theory for the Circuit Envelope Analysis

Pub Date : 2023-06-01 DOI:10.4208/jcm.2301-m2022-0208
Chunxiong Zheng, Xianwei Wen, Jinyu Zhang and Zhenya Zhou
{"title":"Asymptotic Theory for the Circuit Envelope Analysis","authors":"Chunxiong Zheng, Xianwei Wen, Jinyu Zhang and Zhenya Zhou","doi":"10.4208/jcm.2301-m2022-0208","DOIUrl":null,"url":null,"abstract":"Asymptotic theory for the circuit envelope analysis is developed in this paper. A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales: one is the fast timescale of carrier wave, and the other is the slow timescale of modulation signal. We first perform pro forma asymptotic analysis for both the driven and autonomous systems. Then resorting to the Floquet theory of periodic operators, we make a rigorous justification for first-order asymptotic approximations. It turns out that these asymptotic results are valid at least on the slow timescale. To speed up the computation of asymptotic approximations, we propose a periodization technique, which renders the possibility of utilizing the NUFFT algorithm. Numerical experiments are presented, and the results validate the theoretical findings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jcm.2301-m2022-0208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Asymptotic theory for the circuit envelope analysis is developed in this paper. A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales: one is the fast timescale of carrier wave, and the other is the slow timescale of modulation signal. We first perform pro forma asymptotic analysis for both the driven and autonomous systems. Then resorting to the Floquet theory of periodic operators, we make a rigorous justification for first-order asymptotic approximations. It turns out that these asymptotic results are valid at least on the slow timescale. To speed up the computation of asymptotic approximations, we propose a periodization technique, which renders the possibility of utilizing the NUFFT algorithm. Numerical experiments are presented, and the results validate the theoretical findings.
分享
查看原文
电路包络分析的渐近理论
本文提出了电路包络分析的渐近理论。电路包络分析的一个典型特征是存在两个明显不同的时间尺度:一个是载波的快时间尺度,另一个是调制信号的慢时间尺度。我们首先对驱动系统和自主系统进行了形式渐近分析。然后利用周期算子的Floquet理论,给出了一阶渐近逼近的严格证明。结果表明,这些渐近结果至少在慢时间尺度上是有效的。为了加快渐近逼近的计算速度,我们提出了一种周期化技术,这使得利用NUFFT算法成为可能。最后进行了数值实验,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信