On frames that are iterates of a multiplication operator

Q4 Mathematics
A. Shukurov, Afet Jabrailova
{"title":"On frames that are iterates of a multiplication operator","authors":"A. Shukurov, Afet Jabrailova","doi":"10.15446/recolma.v55n2.102513","DOIUrl":null,"url":null,"abstract":"A result from the recent paper of the first named author on frame properties of iterates of the multiplication operator Tφf = φf implies in particular that a system of the form {φn}∞n=0 cannot be a frame in L2(a, b). The classical exponential system shows that the situation changes drastically when one considers systems of the form {φn}∞n=-∞ instead of {φn}∞n=0. This note is dedicated to the characterization of all frames of the form {φn}∞n=-∞ coming from iterates of the multiplication operator Tφ. It is shown in this note that this problem can be reduced to the following one: \nProblem. Find (or describe a class of ) all real-valued functions α for which {einα(·)}+∞n=-∞ is a frame in L2(a, b). \nIn this note we give a partial answer to this problem. \nTo our knowledge, in the general statement, this problem remains unanswered not only for frame, but also for Schauder and Riesz basicity properties and even for orthonormal basicity of systems of the form {einα(·)}+∞n=-∞.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v55n2.102513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A result from the recent paper of the first named author on frame properties of iterates of the multiplication operator Tφf = φf implies in particular that a system of the form {φn}∞n=0 cannot be a frame in L2(a, b). The classical exponential system shows that the situation changes drastically when one considers systems of the form {φn}∞n=-∞ instead of {φn}∞n=0. This note is dedicated to the characterization of all frames of the form {φn}∞n=-∞ coming from iterates of the multiplication operator Tφ. It is shown in this note that this problem can be reduced to the following one: Problem. Find (or describe a class of ) all real-valued functions α for which {einα(·)}+∞n=-∞ is a frame in L2(a, b). In this note we give a partial answer to this problem. To our knowledge, in the general statement, this problem remains unanswered not only for frame, but also for Schauder and Riesz basicity properties and even for orthonormal basicity of systems of the form {einα(·)}+∞n=-∞.
在作为乘法运算符迭代的帧上
第一作者最近关于乘法算子Tφf=φf迭代的框架性质的一篇论文的结果特别暗示了形式为{φn}∞n=0的系统不可能是L2(A,b)中的框架。经典指数系统表明,当考虑形式为{φn}∞n=-∞的系统而不是{φn}∞n=0时,情况会发生剧烈变化。这个注记致力于所有形式为{φn}∞n=-∞的框架的特征化,这些框架来自乘法算子Tφ的迭代。从这个注释中可以看出,这个问题可以归结为以下一个:问题。求(或描述一类)所有实值函数α,其中{einα(·)}+∞n=-∞是L2(a,b)中的一个框架。在本说明中,我们给出了这个问题的部分答案。据我们所知,在一般陈述中,这个问题不仅对于框架,而且对于Schauder和Riesz碱度性质,甚至对于形式为{einα(·)}+∞n=-∞的系统的正交碱度,都没有得到解答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信