Atomistic MD Simulations of n-Alkanes in a Phospholipid Bilayer: CHARMM36 versus Slipids

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Anika Wurl, Tiago M. Ferreira
{"title":"Atomistic MD Simulations of n-Alkanes in a Phospholipid Bilayer: CHARMM36 versus Slipids","authors":"Anika Wurl,&nbsp;Tiago M. Ferreira","doi":"10.1002/mats.202200078","DOIUrl":null,"url":null,"abstract":"<p>Linear alkanes (<i>n</i>-alkanes) are chemically the most simple linear hydrophobic molecules in nature. Studying the incorporation of <i>n</i>-alkanes into lipid membranes is therefore a good starting point toward understanding the behavior of hydrophobic molecules in lipid membranes and to assess how accurately molecular dynamics models describe such systems. Here, the miscibility and structure of different <i>n</i>-alkanes—<i>n</i>-decane (C10), <i>n</i>-eicosane (C20), and <i>n</i>-triacontane (C30)—in dipalmitoylphosphatidylcholine membranes are investigated using two of the most used force fields for lipid membrane molecular dynamics simulations (CHARMM36 and Slipids). The <i>n</i>-alkanes are miscible in the membrane up to a critical volume fraction, ϕ<sub>c</sub>, that depends on the force field interaction parameters used. ϕ<sub>c</sub> is dependent on alkane chain length only for the model with more disordered chains (Slipids). Below ϕ<sub>c</sub>, a comparison with <sup>2</sup>H nuclear magnetic resonance (NMR) spectra indicates that a more realistic structure of the longer alkane molecules (C20 and C30) is obtained using the Slipids force field. On the other hand, for the shorter alkane (C10), Slipids simulations underestimate molecular order and CHARMM36 simulations enable a precise prediction of its experimental spectrum. The predicted <sup>2</sup>H NMR spectra are highly sensitive to 1–4 electrostatic interactions, and suggest that a reduction of the partial charges of the longer alkanes and acyl chains in CHARMM36 results in a better performance. The results presented indicate that lipid membranes with incorporated alkanes are highly valuable systems for the validation of force fields designed to perform lipid membrane simulations.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"32 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202200078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200078","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Linear alkanes (n-alkanes) are chemically the most simple linear hydrophobic molecules in nature. Studying the incorporation of n-alkanes into lipid membranes is therefore a good starting point toward understanding the behavior of hydrophobic molecules in lipid membranes and to assess how accurately molecular dynamics models describe such systems. Here, the miscibility and structure of different n-alkanes—n-decane (C10), n-eicosane (C20), and n-triacontane (C30)—in dipalmitoylphosphatidylcholine membranes are investigated using two of the most used force fields for lipid membrane molecular dynamics simulations (CHARMM36 and Slipids). The n-alkanes are miscible in the membrane up to a critical volume fraction, ϕc, that depends on the force field interaction parameters used. ϕc is dependent on alkane chain length only for the model with more disordered chains (Slipids). Below ϕc, a comparison with 2H nuclear magnetic resonance (NMR) spectra indicates that a more realistic structure of the longer alkane molecules (C20 and C30) is obtained using the Slipids force field. On the other hand, for the shorter alkane (C10), Slipids simulations underestimate molecular order and CHARMM36 simulations enable a precise prediction of its experimental spectrum. The predicted 2H NMR spectra are highly sensitive to 1–4 electrostatic interactions, and suggest that a reduction of the partial charges of the longer alkanes and acyl chains in CHARMM36 results in a better performance. The results presented indicate that lipid membranes with incorporated alkanes are highly valuable systems for the validation of force fields designed to perform lipid membrane simulations.

Abstract Image

磷脂双层中n-烷烃的原子MD模拟:CHARMM36与Slipid
线性烷烃(正烷)是自然界中化学性质最简单的线性疏水分子。因此,研究正构烷烃与脂质膜的结合是理解脂质膜中疏水分子行为和评估分子动力学模型如何准确描述此类系统的一个很好的起点。本文利用脂质膜分子动力学模拟中最常用的两种力场(CHARMM36和Slipids),研究了不同的正构烷烃-正癸烷(C10)、正二十烷(C20)和正三康烷(C30)在双棕榈酰磷脂酰胆碱膜中的混溶性和结构。正构烷烃在膜中可混溶到临界体积分数(ϕc),这取决于所使用的力场相互作用参数。只有在链更无序(滑移)的模型中,才依赖于链的长度。在ϕc以下,与2H核磁共振(NMR)波谱的比较表明,使用sliids力场获得了更真实的长链烷烃分子(C20和C30)的结构。另一方面,对于较短的烷烃(C10), sliids模拟低估了分子序,而CHARMM36模拟能够精确预测其实验光谱。预测的2H核磁共振谱对1-4静电相互作用高度敏感,表明CHARMM36中较长链烷烃和酰基链的部分电荷减少会导致更好的性能。结果表明,含烷烃的脂质膜是一种非常有价值的系统,用于验证用于脂质膜模拟的力场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信