Score-driven multi-regime Markov-switching EGARCH: empirical evidence using the Meixner distribution

IF 0.7 4区 经济学 Q3 ECONOMICS
Szabolcs Blazsek, M. Haddad
{"title":"Score-driven multi-regime Markov-switching EGARCH: empirical evidence using the Meixner distribution","authors":"Szabolcs Blazsek, M. Haddad","doi":"10.1515/snde-2021-0101","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, statistical and volatility forecasting performances of the non-path-dependent score-driven multi-regime Markov-switching (MS) exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models are explored. Three contributions to the existing literature are provided. First, we use all relevant score-driven distributions from the literature - namely, the Student’s t-distribution, general error distribution (GED), skewed generalized t-distribution (Skew-Gen-t), exponential generalized beta distribution of the second kind (EGB2), and normal-inverse Gaussian (NIG) distribution. We then introduce the score-driven Meixner (MXN) distribution-based EGARCH model to the literature on score-driven models. Second, proving the sufficient conditions of the asymptotic properties of the maximum likelihood (ML) estimator for non-path-dependent score-driven MS-EGARCH models is an unsolved problem. We provide a partial solution to that problem by proving necessary conditions for the asymptotic theory of the ML estimator. Third, to the best of our knowledge, this work includes the largest number of international stock indices from the G20 countries in the literature, covering the period of 2000–2022. We provide a discussion on the major events which caused common or non-common switching to the high-volatility regime for the G20 countries. The statistical performance and volatility forecasting results support the adoption of score-driven MS-EGARCH for the G20 countries.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2021-0101","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper, statistical and volatility forecasting performances of the non-path-dependent score-driven multi-regime Markov-switching (MS) exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models are explored. Three contributions to the existing literature are provided. First, we use all relevant score-driven distributions from the literature - namely, the Student’s t-distribution, general error distribution (GED), skewed generalized t-distribution (Skew-Gen-t), exponential generalized beta distribution of the second kind (EGB2), and normal-inverse Gaussian (NIG) distribution. We then introduce the score-driven Meixner (MXN) distribution-based EGARCH model to the literature on score-driven models. Second, proving the sufficient conditions of the asymptotic properties of the maximum likelihood (ML) estimator for non-path-dependent score-driven MS-EGARCH models is an unsolved problem. We provide a partial solution to that problem by proving necessary conditions for the asymptotic theory of the ML estimator. Third, to the best of our knowledge, this work includes the largest number of international stock indices from the G20 countries in the literature, covering the period of 2000–2022. We provide a discussion on the major events which caused common or non-common switching to the high-volatility regime for the G20 countries. The statistical performance and volatility forecasting results support the adoption of score-driven MS-EGARCH for the G20 countries.
分数驱动的多状态马尔可夫切换EGARCH:使用Meixner分布的经验证据
摘要本文研究了非路径依赖分数驱动的多区间马尔可夫开关(MS)指数广义自回归条件异方差(EGARCH)模型的统计和波动率预测性能。提供了对现有文献的三个贡献。首先,我们使用文献中所有相关的分数驱动分布,即学生t分布、一般误差分布(GED)、偏态广义t分布(Skew-Gen-t)、第二类指数广义beta分布(EGB2)和正态反高斯分布(NIG)。然后,我们将基于分数驱动的mexner (MXN)分布的EGARCH模型引入到分数驱动模型的文献中。其次,证明非路径依赖分数驱动的MS-EGARCH模型的最大似然估计量渐近性质的充分条件是一个尚未解决的问题。通过证明ML估计量渐近理论的必要条件,给出了该问题的部分解。第三,据我们所知,这项工作包括了文献中最多的G20国家的国际股票指数,涵盖了2000-2022年期间。我们将讨论导致G20国家普遍或非普遍转向高波动机制的重大事件。统计绩效和波动性预测结果支持在G20国家采用评分驱动的MS-EGARCH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信