Matrix rearrangement inequalities revisited

IF 0.9 4区 数学 Q2 MATHEMATICS
Victoria Chayes
{"title":"Matrix rearrangement inequalities revisited","authors":"Victoria Chayes","doi":"10.7153/mia-2021-24-30","DOIUrl":null,"url":null,"abstract":"Let $||X||_p=\\text{Tr}[(X^\\ast X)^{p/2}]^{1/p}$ denote the $p$-Schatten norm of a matrix $X\\in M_{n\\times n}(\\mathbb{C})$, and $\\sigma(X)$ the singular values with $\\uparrow$ $\\downarrow$ indicating its increasing or decreasing rearrangements. We wish to examine inequalities between $||A+B||_p^p+||A-B||_p^p$, $||\\sigma_\\downarrow(A)+\\sigma_\\downarrow(B)||_p^p+||\\sigma_\\downarrow(A)-\\sigma_\\downarrow(B)||_p^p$, and $||\\sigma_\\uparrow(A)+\\sigma_\\downarrow(B)||_p^p+||\\sigma_\\uparrow(A)-\\sigma_\\downarrow(B)||_p^p$ for various values of $1\\leq p<\\infty$. It was conjectured in [5] that a universal inequality $||\\sigma_\\downarrow(A)+\\sigma_\\downarrow(B)||_p^p+||\\sigma_\\downarrow(A)-\\sigma_\\downarrow(B)||_p^p\\leq ||A+B||_p^p+||A-B||_p^p \\leq ||\\sigma_\\uparrow(A)+\\sigma_\\downarrow(B)||_p^p+||\\sigma_\\uparrow(A)-\\sigma_\\downarrow(B)||_p^p$ might hold for $1\\leq p\\leq 2$ and reverse at $p\\geq 2$, potentially providing a stronger inequality to the generalization of Hanner's Inequality to complex matrices $||A+B||_p^p+||A-B||_p^p\\geq (||A||_p+||B||_p)^p+|||A||_p-||B||_p|^p$. We extend some of the cases in which the inequalities of [5] hold, but offer counterexamples to any general rearrangement inequality holding. We simplify the original proofs of [5] with the technique of majorization. This also allows us to characterize the equality cases of all of the inequalities considered. We also address the commuting, unitary, and $\\{A,B\\}=0$ cases directly, and expand on the role of the anticommutator. In doing so, we extend Hanner's Inequality for complex matrices to the $\\{A,B\\}=0$ case for all ranges of $p$.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-30","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Let $||X||_p=\text{Tr}[(X^\ast X)^{p/2}]^{1/p}$ denote the $p$-Schatten norm of a matrix $X\in M_{n\times n}(\mathbb{C})$, and $\sigma(X)$ the singular values with $\uparrow$ $\downarrow$ indicating its increasing or decreasing rearrangements. We wish to examine inequalities between $||A+B||_p^p+||A-B||_p^p$, $||\sigma_\downarrow(A)+\sigma_\downarrow(B)||_p^p+||\sigma_\downarrow(A)-\sigma_\downarrow(B)||_p^p$, and $||\sigma_\uparrow(A)+\sigma_\downarrow(B)||_p^p+||\sigma_\uparrow(A)-\sigma_\downarrow(B)||_p^p$ for various values of $1\leq p<\infty$. It was conjectured in [5] that a universal inequality $||\sigma_\downarrow(A)+\sigma_\downarrow(B)||_p^p+||\sigma_\downarrow(A)-\sigma_\downarrow(B)||_p^p\leq ||A+B||_p^p+||A-B||_p^p \leq ||\sigma_\uparrow(A)+\sigma_\downarrow(B)||_p^p+||\sigma_\uparrow(A)-\sigma_\downarrow(B)||_p^p$ might hold for $1\leq p\leq 2$ and reverse at $p\geq 2$, potentially providing a stronger inequality to the generalization of Hanner's Inequality to complex matrices $||A+B||_p^p+||A-B||_p^p\geq (||A||_p+||B||_p)^p+|||A||_p-||B||_p|^p$. We extend some of the cases in which the inequalities of [5] hold, but offer counterexamples to any general rearrangement inequality holding. We simplify the original proofs of [5] with the technique of majorization. This also allows us to characterize the equality cases of all of the inequalities considered. We also address the commuting, unitary, and $\{A,B\}=0$ cases directly, and expand on the role of the anticommutator. In doing so, we extend Hanner's Inequality for complex matrices to the $\{A,B\}=0$ case for all ranges of $p$.
矩阵重排不等式
设$||X||_p=\text{Tr}[(X^\ast X)^{p/2}]^{1/p}$表示矩阵$X\在M_{n\times n}(\mathbb{C})$中的$p$-Schatten范数,$\sigma(X)$表示奇异值,$\uparrow$$\downarrow$表示其递增或递减重排。我们希望研究$||A+B||_p^p+||A-B||_pr^p$,$|\sigma_\downarrow(A)+\sigma-\downarow(B)|_p^p+|\sigma _\downarrow(A)||_p^p$,用于$1\leq p<\infty$的各种值。在[5]中,我们猜想了一个普遍不等式$||\sima_\downarrow(a)+\sima_\downarrow _\向下箭头(B)||_p^p$可能保持$1\leqp\leq2$,并在$p\geq2$反转,潜在地为Hanner不等式对复矩阵$||a+B|_p^p+||a-B|_pp^p\geq(||a||_p+||B||_p)^p+|| |a|| _p-||B| |_p|^p$的推广提供了更强的不等式。我们推广了[5]不等式成立的一些情况,但为任何一般重排不等式成立提供了反例。我们用多数化技术简化了[5]的原始证明。这也使我们能够描述所考虑的所有不平等的平等情况。我们还直接讨论了通勤、酉和$\{A,B\}=0$的情况,并扩展了反交换子的作用。在这样做的过程中,我们将复矩阵的Hanner不等式扩展到$p$的所有范围的$\{A,B\}=0$的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信