Sipu Hou, Zongzhen Cai, Jiming Wu, Hongwei Du, Peng Xie
{"title":"Applying Machine Learning to the Development of Prediction Models for Bank Deposit Subscription","authors":"Sipu Hou, Zongzhen Cai, Jiming Wu, Hongwei Du, Peng Xie","doi":"10.4018/ijban.288514","DOIUrl":null,"url":null,"abstract":"It is not easy for banks to sell their term-deposit products to new clients because many factors will affect customers’ purchasing decision and because banks may have difficulties to identify their target customers. To address this issue, we use different supervised machine learning algorithms to predict if a customer will subscribe a bank term deposit and then compare the performance of these prediction models. Specifically, the current paper employs these five algorithms: Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Neural Network. This paper thus contributes to the artificial intelligence and Big Data field with an important evidence of the best performed model for predicting bank term deposit subscription.","PeriodicalId":42590,"journal":{"name":"International Journal of Business Analytics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.288514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 2
Abstract
It is not easy for banks to sell their term-deposit products to new clients because many factors will affect customers’ purchasing decision and because banks may have difficulties to identify their target customers. To address this issue, we use different supervised machine learning algorithms to predict if a customer will subscribe a bank term deposit and then compare the performance of these prediction models. Specifically, the current paper employs these five algorithms: Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Neural Network. This paper thus contributes to the artificial intelligence and Big Data field with an important evidence of the best performed model for predicting bank term deposit subscription.
期刊介绍:
The main objective of the International Journal of Business Analytics (IJBAN) is to advance the next frontier of decision sciences and provide an international forum for practitioners and researchers in business and governmental organizations—as well as information technology professionals, software developers, and vendors—to exchange, share, and present useful and innovative ideas and work. The journal encourages exploration of different models, methods, processes, and principles in profitable and actionable manners.