Application of Dynamic Temperature-Humidity Chamber for Measuring Moisture Sorption Isotherms of Biomaterials as Compared to the Conventional Isopiestic Method

IF 2.8 4区 工程技术 Q2 CHEMISTRY, APPLIED
Maha Al-Khalili, N. Al-Habsi, M. Rahman
{"title":"Application of Dynamic Temperature-Humidity Chamber for Measuring Moisture Sorption Isotherms of Biomaterials as Compared to the Conventional Isopiestic Method","authors":"Maha Al-Khalili, N. Al-Habsi, M. Rahman","doi":"10.1155/2021/1236427","DOIUrl":null,"url":null,"abstract":"Measurement of water activity and moisture sorption isotherms of foods and biomaterials are important to determine the state of water. In this work, a dynamic temperature-humidity (DTH) controlled chamber was used to measure water sorption isotherm and compared with the conventional isopiestic method. Temperature and relative humidity of DTH chamber can be controlled in the range of -15 to 100°C and 0 to 98%, respectively; thus, measurement of water activity at any point can be measured within the above ranges. The DTH chamber method showed high reproducibility as compared with the conventional isopiestic method when measured isotherms of cellulose, lignin, and hemicellulase were compared at 30°C. Finally, isotherm data of cellulose, lignin, and hemicellulase were generated in the temperature range of 10-90°C using DTH chamber, and these were modelled by BET and GAB equations. The model parameters were correlated with the temperature.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2021/1236427","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Measurement of water activity and moisture sorption isotherms of foods and biomaterials are important to determine the state of water. In this work, a dynamic temperature-humidity (DTH) controlled chamber was used to measure water sorption isotherm and compared with the conventional isopiestic method. Temperature and relative humidity of DTH chamber can be controlled in the range of -15 to 100°C and 0 to 98%, respectively; thus, measurement of water activity at any point can be measured within the above ranges. The DTH chamber method showed high reproducibility as compared with the conventional isopiestic method when measured isotherms of cellulose, lignin, and hemicellulase were compared at 30°C. Finally, isotherm data of cellulose, lignin, and hemicellulase were generated in the temperature range of 10-90°C using DTH chamber, and these were modelled by BET and GAB equations. The model parameters were correlated with the temperature.
动态温湿度箱在生物材料吸湿等温线测量中的应用与传统等静压法的比较
测定食品和生物材料的水活度和吸湿等温线对确定水的状态很重要。本文采用动态温湿控制室测量吸水等温线,并与常规等静力法进行了比较。潜孔室温度和相对湿度控制范围分别为-15 ~ 100℃和0 ~ 98%;因此,任何点的水活度测量都可以在上述范围内测量。在30°C下比较纤维素、木质素和半纤维素酶的等温线时,DTH室法与传统等静力法相比具有较高的重现性。最后,利用DTH室在10-90℃范围内生成纤维素、木质素和半纤维素酶的等温线数据,并通过BET和GAB方程对这些数据进行建模。模型参数与温度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption Science & Technology
Adsorption Science & Technology 工程技术-工程:化工
CiteScore
5.00
自引率
10.30%
发文量
181
审稿时长
4.5 months
期刊介绍: Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信