Mixed determinants, compensated integrability, and new a priori estimates in gas dynamics

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
D. Serre
{"title":"Mixed determinants, compensated integrability, and new a priori estimates in gas dynamics","authors":"D. Serre","doi":"10.1090/qam/1640","DOIUrl":null,"url":null,"abstract":"We extend the scope of our recent Compensated Integrability theory, by exploiting the multi-linearity of the determinant map over \n\n \n \n \n \n S\n y\n m\n \n n\n \n (\n \n R\n \n )\n \n \\mathbf {Sym}_n(\\mathbb {R})\n \n\n. This allows us to establish new a priori estimates for inviscid gases flowing in the whole space \n\n \n \n \n R\n \n d\n \n \\mathbb {R}^d\n \n\n. Notably, we estimate the defect measure (Boltzman equation) or weighted spacial correlations of the velocity field (Euler system). As usual, our bounds involve only the total mass and energy of the flow.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1640","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the scope of our recent Compensated Integrability theory, by exploiting the multi-linearity of the determinant map over S y m n ( R ) \mathbf {Sym}_n(\mathbb {R}) . This allows us to establish new a priori estimates for inviscid gases flowing in the whole space R d \mathbb {R}^d . Notably, we estimate the defect measure (Boltzman equation) or weighted spacial correlations of the velocity field (Euler system). As usual, our bounds involve only the total mass and energy of the flow.
气体动力学中的混合行列式、补偿可积性和新的先验估计
通过利用Sym n(R) \mathbf {Sym}_n(\mathbb {R})上的行列式映射的多重线性,我们扩展了我们最近的补偿可积性理论的范围。这使我们能够对在整个空间R d \mathbb {R}^d中流动的无粘性气体建立新的先验估计。值得注意的是,我们估计了缺陷度量(玻尔兹曼方程)或速度场的加权空间相关性(欧拉系统)。像往常一样,我们的边界只涉及流的总质量和总能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信