On the failure of the chain rule for the divergence of Sobolev vector fields

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Miriam Buck, S. Modena
{"title":"On the failure of the chain rule for the divergence of Sobolev vector fields","authors":"Miriam Buck, S. Modena","doi":"10.1142/s0219891623500108","DOIUrl":null,"url":null,"abstract":"We construct a large class of incompressible vector fields with Sobolev regularity, in dimension [Formula: see text], for which the chain rule problem has a negative answer. In particular, for any renormalization map [Formula: see text] (satisfying suitable assumptions) and any (distributional) renormalization defect [Formula: see text] of the form [Formula: see text], where [Formula: see text] is an [Formula: see text] vector field, we can construct an incompressible Sobolev vector field [Formula: see text] and a density [Formula: see text] for which [Formula: see text] but [Formula: see text], provided [Formula: see text].","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891623500108","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

We construct a large class of incompressible vector fields with Sobolev regularity, in dimension [Formula: see text], for which the chain rule problem has a negative answer. In particular, for any renormalization map [Formula: see text] (satisfying suitable assumptions) and any (distributional) renormalization defect [Formula: see text] of the form [Formula: see text], where [Formula: see text] is an [Formula: see text] vector field, we can construct an incompressible Sobolev vector field [Formula: see text] and a density [Formula: see text] for which [Formula: see text] but [Formula: see text], provided [Formula: see text].
关于Sobolev向量场发散的链式规则的失效
我们构造了一大类具有Sobolev正则性的不可压缩向量场,其维数为[公式:见文本],其中链式法则问题有一个否定的答案。特别地,对于任何重整化映射[公式:见文](满足适当的假设)和任何(分布的)重整化缺陷[公式:见文]的形式[公式:见文],其中[公式:见文]是一个[公式:见文]向量场,我们可以构造一个不可压缩的Sobolev向量场[公式:见文]和一个密度[公式:见文],其中[公式:见文]但[公式:见文],提供[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信