Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations

IF 3.2 1区 数学 Q1 MATHEMATICS
Gui-Dong Li, Yong-Yong Li, Chunlei Tang
{"title":"Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations","authors":"Gui-Dong Li, Yong-Yong Li, Chunlei Tang","doi":"10.1515/anona-2021-0221","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, a class of Schrödinger equations is investigated, which can be stated as −Δu+V(x)u=f(u),    x∈ℝN. - \\Delta u + V(x)u = f(u),\\;\\;\\;\\;x \\in {{\\rm{\\mathbb R}}^N}. If the external potential V is radial and coercive, then we give the local Ambrosetti-Rabinowitz super-linear condition on the nonlinearity term f ∈ C(ℝ, ℝ) which assures the problem has not only infinitely many radial sign-changing solutions, but also infinitely many non-radial sign-changing solutions.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"907 - 920"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0221","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In the present paper, a class of Schrödinger equations is investigated, which can be stated as −Δu+V(x)u=f(u),    x∈ℝN. - \Delta u + V(x)u = f(u),\;\;\;\;x \in {{\rm{\mathbb R}}^N}. If the external potential V is radial and coercive, then we give the local Ambrosetti-Rabinowitz super-linear condition on the nonlinearity term f ∈ C(ℝ, ℝ) which assures the problem has not only infinitely many radial sign-changing solutions, but also infinitely many non-radial sign-changing solutions.
Schrödinger方程的无穷多径向和非径向变号解
本文研究了一类Schrödinger方程,它可以表示为-Δu+V(x)u=f(u),    x∈ℝN.-\Δu+V(x)u=f(u),\;\;\;x\在{\rm{\mathbb R}}^N}中。如果外电势V是径向的和矫顽的,则我们给出了非线性项f∈C上的局部Ambrosetti-Rabinowitz超线性条件(ℝ, ℝ) 这保证了问题不仅有无限多个径向变符号的解,而且有无限多的非径向变符号解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信