{"title":"Solving forward and inverse problems involving a nonlinear three-dimensional partial differential equation via asymptotic expansions","authors":"D. Chaikovskii, Ye Zhang","doi":"10.1093/imamat/hxad021","DOIUrl":null,"url":null,"abstract":"\n This paper concerns the use of asymptotic expansions for the efficient solving of forward and inverse problems involving a nonlinear singularly perturbed time-dependent reaction–diffusion–advection equation. By using an asymptotic expansion with the local coordinates in the transition-layer region, we prove the existence and uniqueness of a smooth solution with a sharp transition layer for a three-dimensional partial differential equation. Moreover, with the help of asymptotic expansion, a simplified model is derived for the corresponding inverse source problem, which is close to the original inverse problem over the entire region except for a narrow transition layer. We show that such simplification does not reduce the accuracy of the inversion results when the measurement data contain noise. Based on this simpler inversion model, an asymptotic-expansion regularization algorithm is proposed for efficiently solving the inverse source problem in the three-dimensional case. A model problem shows the feasibility of the proposed numerical approach.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxad021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper concerns the use of asymptotic expansions for the efficient solving of forward and inverse problems involving a nonlinear singularly perturbed time-dependent reaction–diffusion–advection equation. By using an asymptotic expansion with the local coordinates in the transition-layer region, we prove the existence and uniqueness of a smooth solution with a sharp transition layer for a three-dimensional partial differential equation. Moreover, with the help of asymptotic expansion, a simplified model is derived for the corresponding inverse source problem, which is close to the original inverse problem over the entire region except for a narrow transition layer. We show that such simplification does not reduce the accuracy of the inversion results when the measurement data contain noise. Based on this simpler inversion model, an asymptotic-expansion regularization algorithm is proposed for efficiently solving the inverse source problem in the three-dimensional case. A model problem shows the feasibility of the proposed numerical approach.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.