Hydrodynamical Simulations of the Galaxy Population: Enduring Successes and Outstanding Challenges

IF 26.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
R. Crain, F. Voort
{"title":"Hydrodynamical Simulations of the Galaxy Population: Enduring Successes and Outstanding Challenges","authors":"R. Crain, F. Voort","doi":"10.1146/annurev-astro-041923-043618","DOIUrl":null,"url":null,"abstract":"We review the progress in modeling the galaxy population in hydrodynamical simulations of the ΛCDM cosmogony. State-of-the-art simulations now broadly reproduce the observed spatial clustering of galaxies; the distributions of key characteristics, such as mass, size, and SFR; and scaling relations connecting diverse properties to mass. Such improvements engender confidence in the insight drawn from simulations. Many important outcomes, however, particularly the properties of circumgalactic gas, are sensitive to the details of the subgrid models used to approximate the macroscopic effects of unresolved physics, such as feedback processes. We compare the outcomes of leading simulation suites with observations, and with each other, to identify the enduring successes they have cultivated and the outstanding challenges to be tackled with the next generation of models. Our key conclusions include the following: ▪ Realistic galaxies can be reproduced by calibrating the ill-constrained parameters of subgrid feedback models. Feedback is dominated by stars and black holes in low-mass and high mass galaxies, respectively. ▪ Adjusting or disabling the processes implemented in simulations can elucidate their impact on observables, but outcomes can be degenerate. ▪ Similar galaxy populations can emerge in simulations with dissimilar feedback implementations. However, these models generally predict markedly different gas flow rates into, and out of, galaxies and their halos. CGM observations are thus a promising means of breaking this degeneracy and guiding the development of new feedback models. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-041923-043618","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

We review the progress in modeling the galaxy population in hydrodynamical simulations of the ΛCDM cosmogony. State-of-the-art simulations now broadly reproduce the observed spatial clustering of galaxies; the distributions of key characteristics, such as mass, size, and SFR; and scaling relations connecting diverse properties to mass. Such improvements engender confidence in the insight drawn from simulations. Many important outcomes, however, particularly the properties of circumgalactic gas, are sensitive to the details of the subgrid models used to approximate the macroscopic effects of unresolved physics, such as feedback processes. We compare the outcomes of leading simulation suites with observations, and with each other, to identify the enduring successes they have cultivated and the outstanding challenges to be tackled with the next generation of models. Our key conclusions include the following: ▪ Realistic galaxies can be reproduced by calibrating the ill-constrained parameters of subgrid feedback models. Feedback is dominated by stars and black holes in low-mass and high mass galaxies, respectively. ▪ Adjusting or disabling the processes implemented in simulations can elucidate their impact on observables, but outcomes can be degenerate. ▪ Similar galaxy populations can emerge in simulations with dissimilar feedback implementations. However, these models generally predict markedly different gas flow rates into, and out of, galaxies and their halos. CGM observations are thus a promising means of breaking this degeneracy and guiding the development of new feedback models. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 61 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
银河系种群的流体动力学模拟:持久的成功和突出的挑战
本文综述了ΛCDM宇宙学流体动力学模拟中星系群模型的研究进展。现在,最先进的模拟技术广泛地再现了观测到的星系空间集群;关键特征的分布,如质量、尺寸和SFR;以及将各种性质与质量联系起来的比例关系。这种改进使人们对从模拟中得出的见解充满信心。然而,许多重要的结果,特别是环星系气体的特性,对用于近似未解决的物理的宏观效应(如反馈过程)的子网格模型的细节很敏感。我们将领先的模拟套件的结果与观测结果以及彼此之间的结果进行比较,以确定它们所培养的持久成功以及下一代模型需要解决的突出挑战。我们的主要结论包括:▪真实的星系可以通过校准子网格反馈模型的非约束参数来重现。反馈分别由低质量星系和高质量星系中的恒星和黑洞主导。▪调整或禁用模拟中实现的过程可以阐明它们对可观察对象的影响,但结果可能会退化。▪相似的星系群可以在不同反馈实现的模拟中出现。然而,这些模型通常预测进入和离开星系及其光晕的气体流动速率明显不同。因此,CGM观测是打破这种简并并指导新反馈模型发展的一种有希望的手段。《天文学和天体物理学年度评论》第61卷的最终在线出版日期预计为2023年8月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
54.80
自引率
0.60%
发文量
14
期刊介绍: The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques, History of the development of new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信