{"title":"Influence of Dynamic and Static Interference on the Internal Flow and Vibration and Noise Characteristics of Marine Centrifugal Pump","authors":"Z. Cheng, Q. Ma, H. Liu, L. Dong, Q. Pan","doi":"10.47176/jafm.16.10.1860","DOIUrl":null,"url":null,"abstract":"To improve the overall performance of marine centrifugal pumps (MCPs), their vibration and noise performances were optimized using the hydraulic design of the volute casing parameters considering a constant hydraulic performance at a specific speed of 66.7. Numerical simulations of the full flow field, vibration, and noise were conducted for each of five volute base circle diameters. The impact of dynamic and static disturbances on the flow and vibration and noise characteristics were investigated. These results provide some theoretical and technical support for the design and application of MCPs. The flow pattern inside the volute becomes more uniform as the D3 increases, but the pressure pulsation decreases. The total vibration levels of the inlet flange, outlet flange, and pump base decreased by 8.3%, 7.9%, and 12.3% respectively. The sound pressure of the flow noise at each characteristic frequency showed a different degree of decreasing trend.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.10.1860","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the overall performance of marine centrifugal pumps (MCPs), their vibration and noise performances were optimized using the hydraulic design of the volute casing parameters considering a constant hydraulic performance at a specific speed of 66.7. Numerical simulations of the full flow field, vibration, and noise were conducted for each of five volute base circle diameters. The impact of dynamic and static disturbances on the flow and vibration and noise characteristics were investigated. These results provide some theoretical and technical support for the design and application of MCPs. The flow pattern inside the volute becomes more uniform as the D3 increases, but the pressure pulsation decreases. The total vibration levels of the inlet flange, outlet flange, and pump base decreased by 8.3%, 7.9%, and 12.3% respectively. The sound pressure of the flow noise at each characteristic frequency showed a different degree of decreasing trend.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .