Lipschitz functions on quasiconformal trees

Pub Date : 2022-04-12 DOI:10.4064/fm273-3-2023
D. Freeman, C. Gartland
{"title":"Lipschitz functions on quasiconformal trees","authors":"D. Freeman, C. Gartland","doi":"10.4064/fm273-3-2023","DOIUrl":null,"url":null,"abstract":"We first identify (up to linear isomorphism) the Lipschitz free spaces of quasiarcs. By decomposing quasiconformal trees into quasiarcs as done in an article of David, Eriksson-Bique, and Vellis, we then identify the Lipschitz free spaces of quasiconformal trees and prove that quasiconformal trees have Lipschitz dimension 1. Generalizing the aforementioned decomposition, we define a geometric tree-like decomposition of a metric space. Our results pertaining to quasiconformal trees are in fact special cases of results about metric spaces admitting a geometric tree-like decomposition. Furthermore, the methods employed in our study of Lipschitz free spaces yield a decomposition of any (weak) quasiarc into rectifiable and purely unrectifiable subsets, which may be of independent interest.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm273-3-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We first identify (up to linear isomorphism) the Lipschitz free spaces of quasiarcs. By decomposing quasiconformal trees into quasiarcs as done in an article of David, Eriksson-Bique, and Vellis, we then identify the Lipschitz free spaces of quasiconformal trees and prove that quasiconformal trees have Lipschitz dimension 1. Generalizing the aforementioned decomposition, we define a geometric tree-like decomposition of a metric space. Our results pertaining to quasiconformal trees are in fact special cases of results about metric spaces admitting a geometric tree-like decomposition. Furthermore, the methods employed in our study of Lipschitz free spaces yield a decomposition of any (weak) quasiarc into rectifiable and purely unrectifiable subsets, which may be of independent interest.
分享
查看原文
拟共形树上的Lipschitz函数
我们首先确定(直到线性同构)拟弧的Lipschitz自由空间。在David, Eriksson-Bique和Vellis的一篇文章中,我们将拟共形树分解成拟弧,然后我们确定了拟共形树的Lipschitz自由空间,并证明了拟共形树的Lipschitz维数为1。推广上述分解,我们定义了度量空间的几何树状分解。我们关于拟共形树的结果实际上是度量空间允许几何树状分解的结果的特殊情况。此外,我们在Lipschitz自由空间的研究中所采用的方法将任何(弱)拟弧分解为可整集和纯不可整集,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信