Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection

IF 1.9 Q4 ENERGY & FUELS
Yanhui Xu , Yihao Gao , Yundan Cheng , Yuhang Sun , Xuesong Li , Xianxian Pan , Hao Yu
{"title":"Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection","authors":"Yanhui Xu ,&nbsp;Yihao Gao ,&nbsp;Yundan Cheng ,&nbsp;Yuhang Sun ,&nbsp;Xuesong Li ,&nbsp;Xianxian Pan ,&nbsp;Hao Yu","doi":"10.1016/j.gloei.2023.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>The premise and basis of load modeling are substation load composition inquiries and cluster analyses. However, the traditional kernel fuzzy C-means (KFCM) algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions. To overcome these limitations, an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper. This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm. The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio. Compared with the traditional KFCM algorithm, the enhanced KFCM algorithm has robust clustering and comprehensive abilities, enabling the efficient convergence to the global optimal solution</p></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"6 4","pages":"Pages 505-516"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511723000695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The premise and basis of load modeling are substation load composition inquiries and cluster analyses. However, the traditional kernel fuzzy C-means (KFCM) algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions. To overcome these limitations, an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper. This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm. The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio. Compared with the traditional KFCM algorithm, the enhanced KFCM algorithm has robust clustering and comprehensive abilities, enabling the efficient convergence to the global optimal solution

基于自适应最优聚类数选择改进KFCM算法的变电站聚类
负荷建模的前提和基础是变电站负荷组成查询和聚类分析。然而,传统的核模糊c -均值(KFCM)算法存在人工聚类数选择和收敛于局部最优解的局限性。为了克服这些局限性,本文提出了一种自适应最优聚类数选择的改进KFCM算法。该算法结合遗传算法强大的全局搜索能力和模拟退火算法的鲁棒局部搜索能力,对KFCM算法进行了优化。改进的KFCM算法利用聚类评价指标比自适应确定理想聚类数。与传统的KFCM算法相比,增强的KFCM算法具有鲁棒的聚类能力和综合能力,能够快速收敛到全局最优解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信