Electro-Hydraulic Load-Sensitive Simulation Study of Walking Hy-draulic System of Electric Agricultural Machinery

IF 0.6 4区 工程技术 Q4 MECHANICS
Mechanika Pub Date : 2022-12-05 DOI:10.5755/j02.mech.31470
Hongyun Mu, Y. Luo, Yu-gong Luo
{"title":"Electro-Hydraulic Load-Sensitive Simulation Study of Walking Hy-draulic System of Electric Agricultural Machinery","authors":"Hongyun Mu, Y. Luo, Yu-gong Luo","doi":"10.5755/j02.mech.31470","DOIUrl":null,"url":null,"abstract":"The conventional load-sensitive hydraulic drive chassis system for agricultural machinery uses a combination of engine and load-sensitive pump, which cannot adjust the control strategy according to the working conditions. It does not meet the current trend of energy-saving and emission reduction. To this end, an electro-hydraulic load-sensitive hydraulic drive chassis system for agricultural machinery, which uses a combination of permanent magnet synchronous motor and quantitative pump, is proposed. A variable LS differential pressure control and a variable differential pressure control of the pressure compensation valve to improve agricultural machinery's working performance are proposed. AMESim is used to establish the system simulation model to obtain the system composite motion, variable LS differential pressure control, and variable pressure differential control of the pressure compensation valve performance. The simulation results show that the system achieves the essential functions of a conventional load-sensitive system. The variable LS differential pressure control and the variable pressure differential control of the pressure compensation valve are feasible. They can effectively improve the performance of agricultural machinery to adapt to working conditions. It can effectively reduce the system energy consumption and provide a theoretical basis for the intellectualization of electric agricultural machinery.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.31470","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional load-sensitive hydraulic drive chassis system for agricultural machinery uses a combination of engine and load-sensitive pump, which cannot adjust the control strategy according to the working conditions. It does not meet the current trend of energy-saving and emission reduction. To this end, an electro-hydraulic load-sensitive hydraulic drive chassis system for agricultural machinery, which uses a combination of permanent magnet synchronous motor and quantitative pump, is proposed. A variable LS differential pressure control and a variable differential pressure control of the pressure compensation valve to improve agricultural machinery's working performance are proposed. AMESim is used to establish the system simulation model to obtain the system composite motion, variable LS differential pressure control, and variable pressure differential control of the pressure compensation valve performance. The simulation results show that the system achieves the essential functions of a conventional load-sensitive system. The variable LS differential pressure control and the variable pressure differential control of the pressure compensation valve are feasible. They can effectively improve the performance of agricultural machinery to adapt to working conditions. It can effectively reduce the system energy consumption and provide a theoretical basis for the intellectualization of electric agricultural machinery.
电动农机行走液压系统的电液负载敏感仿真研究
传统的农业机械负载敏感液压驱动底盘系统使用发动机和负载敏感泵的组合,不能根据工作条件调整控制策略。它不符合当前节能减排的趋势。为此,提出了一种采用永磁同步电机和定量泵相结合的农业机械电液负载敏感液压驱动底盘系统。为了提高农业机械的工作性能,提出了一种变LS压差控制和压力补偿阀的变压差控制方法。利用AMESim建立系统仿真模型,得到系统复合运动、变LS压差控制、变压差控制的压力补偿阀性能。仿真结果表明,该系统实现了传统负载敏感系统的基本功能。可变LS压差控制和压力补偿阀的可变压差控制是可行的。它们可以有效地提高农业机械的性能以适应工作条件。可以有效降低系统能耗,为电动农业机械的智能化提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信