Chaos of COVID-19 Superspreading Events: An Analysis Via a Data-driven Approach

IF 1 Q4 HEALTH POLICY & SERVICES
N. Ganegoda, S. Perera
{"title":"Chaos of COVID-19 Superspreading Events: An Analysis Via a Data-driven Approach","authors":"N. Ganegoda, S. Perera","doi":"10.1177/09720634221150964","DOIUrl":null,"url":null,"abstract":"Superspreading has become a key mechanism of COVID-19 transmission which creates chaos. The classical approach of compartmental models may not sufficiently reflect the epidemiological situation amid superspreading events (SSEs). We perform a data-driven approach and recognise the deterministic chaos of confirmed cases. The first derivative (≈difference of total confirmed cases) and the second derivative (≈difference of the first derivative) are used upon SSEs to showcase the chaos. Varying solution trajectories, sensitivity and numerical unpredictability are the chaotic characteristics discussed here.","PeriodicalId":45421,"journal":{"name":"Journal of Health Management","volume":"25 1","pages":"514 - 525"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09720634221150964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Superspreading has become a key mechanism of COVID-19 transmission which creates chaos. The classical approach of compartmental models may not sufficiently reflect the epidemiological situation amid superspreading events (SSEs). We perform a data-driven approach and recognise the deterministic chaos of confirmed cases. The first derivative (≈difference of total confirmed cases) and the second derivative (≈difference of the first derivative) are used upon SSEs to showcase the chaos. Varying solution trajectories, sensitivity and numerical unpredictability are the chaotic characteristics discussed here.
新冠肺炎超级传播事件的混沌:基于数据驱动方法的分析
超级传播已成为新冠肺炎传播的关键机制,造成混乱。分区模型的经典方法可能无法充分反映超级传播事件(SSEs)中的流行病学状况。我们采用数据驱动的方法,识别确诊病例的确定性混乱。SSE使用一阶导数(≈总确诊病例的差)和二阶导数(≠一阶导数的差)来展示混乱。变解轨迹、灵敏度和数值不可预测性是本文讨论的混沌特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Health Management
Journal of Health Management HEALTH POLICY & SERVICES-
CiteScore
3.40
自引率
0.00%
发文量
84
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信