Structural and functional metagenomic analyses of a tropical agricultural soil

IF 2 Q3 SOIL SCIENCE
L. B. Salam, O. S. Obayori
{"title":"Structural and functional metagenomic analyses of a tropical agricultural soil","authors":"L. B. Salam, O. S. Obayori","doi":"10.3232/SJSS.2019.V9.N1.01","DOIUrl":null,"url":null,"abstract":"Understanding the intricate link between the soil microbiota and their metabolic functions is important for agricultural and ecological processes and could be used as a biomarker of soil health. To understand the relationship between soil microbial community structure and functions, a soil microcosm designated 2S (agricultural soil) was set up. Metagenomic DNA was extracted from the soil microcosm and sequenced using Miseq Illumina next generation sequencing and analysed for their structural and functional properties. Structural analysis of the soil microcosm by MG-RAST revealed 40 phyla, 78 classes, 157 orders, 273 families and 750 genera. Actinobacteria (54.0%) and Proteobacteria (17.5%) are the dominant phyla while Conexibacter (8.38%), Thermoleophilum (7.40%), and Streptomyces (4.14%) are the dominant genera. Further assignment of the metagenomics using Cluster of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI’s CDD revealed diverse metabolic pathways utilized by the microbial community for the metabolism of carbohydrates, amino acids, lipids, biosynthesis of secondary metabolites and resistance to antibiotics. Taxonomic analysis of the annotated genes also revealed the preponderance of members of Actinobacteria and Proteobacteria. This study has established that members of the phyla Actinobacteria and Proteobacteria are the key drivers of the majority of important metabolic activities in the soil ecosystem and are thus an integral part of the soil microbial community.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2019.V9.N1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 8

Abstract

Understanding the intricate link between the soil microbiota and their metabolic functions is important for agricultural and ecological processes and could be used as a biomarker of soil health. To understand the relationship between soil microbial community structure and functions, a soil microcosm designated 2S (agricultural soil) was set up. Metagenomic DNA was extracted from the soil microcosm and sequenced using Miseq Illumina next generation sequencing and analysed for their structural and functional properties. Structural analysis of the soil microcosm by MG-RAST revealed 40 phyla, 78 classes, 157 orders, 273 families and 750 genera. Actinobacteria (54.0%) and Proteobacteria (17.5%) are the dominant phyla while Conexibacter (8.38%), Thermoleophilum (7.40%), and Streptomyces (4.14%) are the dominant genera. Further assignment of the metagenomics using Cluster of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI’s CDD revealed diverse metabolic pathways utilized by the microbial community for the metabolism of carbohydrates, amino acids, lipids, biosynthesis of secondary metabolites and resistance to antibiotics. Taxonomic analysis of the annotated genes also revealed the preponderance of members of Actinobacteria and Proteobacteria. This study has established that members of the phyla Actinobacteria and Proteobacteria are the key drivers of the majority of important metabolic activities in the soil ecosystem and are thus an integral part of the soil microbial community.
热带农业土壤的结构与功能宏基因组分析
了解土壤微生物群及其代谢功能之间的复杂联系对农业和生态过程很重要,可以作为土壤健康的生物标志物。为了了解土壤微生物群落结构和功能之间的关系,建立了一个名为2S(农业土壤)的土壤微宇宙。从土壤微观中提取宏基因组DNA,并使用Miseq Illumina下一代测序进行测序,并分析其结构和功能特性。MG-RAST对土壤微观结构的分析揭示了40门78纲157目273科750属。放线菌门(54.0%)和变形菌门(17.5%)是优势菌门,Conexibacter属(8.38%)、嗜热菌属(7.40%)和链霉菌属(4.14%)是主要属。使用同源群簇(COG)、京都基因和基因组百科全书(KEGG)、GhostKOALA和NCBI的CDD对宏基因组学进行进一步分配,揭示了微生物群落用于碳水化合物、氨基酸、脂质代谢、次级代谢产物生物合成和抗生素耐药性的多种代谢途径。对注释基因的分类分析也揭示了放线菌门和变形菌门成员的优势。这项研究表明,放线菌门和变形菌门的成员是土壤生态系统中大多数重要代谢活动的关键驱动因素,因此是土壤微生物群落不可分割的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
13
期刊介绍: The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信