D. Lacedonia, N. Tartaglia, G. Scioscia, P. Soccio, G. Pavone, G. Moriondo, C. Gallo, M. F. Foschino Barbaro, A. Ambrosi
{"title":"Different expression of miRNA in the subcutaneous and visceral adipose tissue of obese subjects.","authors":"D. Lacedonia, N. Tartaglia, G. Scioscia, P. Soccio, G. Pavone, G. Moriondo, C. Gallo, M. F. Foschino Barbaro, A. Ambrosi","doi":"10.1089/rej.2022.0004","DOIUrl":null,"url":null,"abstract":"Obesity is a pathology characterized by an excessive accumulation of adipose tissue and it is a condition associated with complex alterations affecting different organs and systems. Obesity has great influences on cardiovascular and respiratory morbidity and mortality and impairs the multiple aspects of metabolism. Since micro-RNAs (miRNAs) are thought to play a role in the regulation of various pathological processes, in this complex framework, the investigation of these classes of noncoding regulatory RNA seems to be promising. Selected group of obese subjects was recruited. We analysed the expression of seven miRNAs from obese adipose tissue supposed to have a role in the pathogenesis of cardiovascular and respiratory disease related to obesity and we compared it with the expression of the same miRNAs in a group of non-obese controls. In the current study what emerged is miR-27b and miR-483 significant down-regulation in subcutaneous adipose tissue from obese group compared with non-obese ones. For visceral adipose tissue, a significant decrease in miR-27b and miR-223 expression was observed in obese group. Moreover, a different expression of miR-26a and miR-338 in the obese group was found. Those findings could help the individuation of previously unknown key players in the development of different diseases usually associated with obesity, such as cardiovascular and pulmonary diseases.","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2022.0004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Obesity is a pathology characterized by an excessive accumulation of adipose tissue and it is a condition associated with complex alterations affecting different organs and systems. Obesity has great influences on cardiovascular and respiratory morbidity and mortality and impairs the multiple aspects of metabolism. Since micro-RNAs (miRNAs) are thought to play a role in the regulation of various pathological processes, in this complex framework, the investigation of these classes of noncoding regulatory RNA seems to be promising. Selected group of obese subjects was recruited. We analysed the expression of seven miRNAs from obese adipose tissue supposed to have a role in the pathogenesis of cardiovascular and respiratory disease related to obesity and we compared it with the expression of the same miRNAs in a group of non-obese controls. In the current study what emerged is miR-27b and miR-483 significant down-regulation in subcutaneous adipose tissue from obese group compared with non-obese ones. For visceral adipose tissue, a significant decrease in miR-27b and miR-223 expression was observed in obese group. Moreover, a different expression of miR-26a and miR-338 in the obese group was found. Those findings could help the individuation of previously unknown key players in the development of different diseases usually associated with obesity, such as cardiovascular and pulmonary diseases.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.