Uncovering hidden patterns of design ideation using hidden Markov modeling and neuroimaging

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mo Hu, Christopher McComb, K. Goucher-Lambert
{"title":"Uncovering hidden patterns of design ideation using hidden Markov modeling and neuroimaging","authors":"Mo Hu, Christopher McComb, K. Goucher-Lambert","doi":"10.1017/S0890060423000021","DOIUrl":null,"url":null,"abstract":"Abstract The study presented in this paper applies hidden Markov modeling (HMM) to uncover the recurring patterns within a neural activation dataset collected while designers engaged in a design concept generation task. HMM uses a probabilistic approach that describes data (here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on the fMRI data's temporal and spatial properties, HMM enables an automatic inference on states in neurocognitive activation data that are highly likely to occur in concept generation. The states with a higher likelihood of occupancy show more activation in the brain regions from the executive control network, the default mode network, and the middle temporal cortex. Different activation patterns and transfers are associated with these states, linking to varying cognitive functions, for example, semantic processing, memory retrieval, executive control, and visual processing, that characterize possible transitions in cognition related to concept generation. HMM offers new insights into cognitive dynamics in design by uncovering the temporal and spatial patterns in neurocognition related to concept generation. Future research can explore new avenues of data analysis methods to investigate design neurocognition and provide a more detailed description of cognitive dynamics in design.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060423000021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The study presented in this paper applies hidden Markov modeling (HMM) to uncover the recurring patterns within a neural activation dataset collected while designers engaged in a design concept generation task. HMM uses a probabilistic approach that describes data (here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on the fMRI data's temporal and spatial properties, HMM enables an automatic inference on states in neurocognitive activation data that are highly likely to occur in concept generation. The states with a higher likelihood of occupancy show more activation in the brain regions from the executive control network, the default mode network, and the middle temporal cortex. Different activation patterns and transfers are associated with these states, linking to varying cognitive functions, for example, semantic processing, memory retrieval, executive control, and visual processing, that characterize possible transitions in cognition related to concept generation. HMM offers new insights into cognitive dynamics in design by uncovering the temporal and spatial patterns in neurocognition related to concept generation. Future research can explore new avenues of data analysis methods to investigate design neurocognition and provide a more detailed description of cognitive dynamics in design.
使用隐马尔可夫模型和神经成像揭示设计构思的隐藏模式
摘要本文中提出的研究应用隐马尔可夫模型(HMM)来揭示在设计师从事设计概念生成任务时收集的神经激活数据集中的重复模式。HMM使用概率方法,将数据(此处为fMRI神经成像数据)描述为离散状态的动态序列。在没有对fMRI数据的时间和空间特性进行预先假设的情况下,HMM能够自动推断神经认知激活数据中极有可能发生在概念生成中的状态。占据可能性较高的状态显示,来自执行控制网络、默认模式网络和中颞皮层的大脑区域有更多的激活。不同的激活模式和转移与这些状态有关,与不同的认知功能有关,例如语义处理、记忆检索、执行控制和视觉处理,这些功能表征了与概念生成相关的认知中可能的转变。HMM通过揭示与概念生成相关的神经认知的时间和空间模式,为设计中的认知动力学提供了新的见解。未来的研究可以探索数据分析方法的新途径,以研究设计神经认知,并对设计中的认知动力学提供更详细的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信