Symmetries of quaternionic Kähler manifolds with S1 ‐symmetry

IF 1.1 Q1 MATHEMATICS
V. Cort'es, A. Saha, D. Thung
{"title":"Symmetries of quaternionic Kähler manifolds with S1 ‐symmetry","authors":"V. Cort'es, A. Saha, D. Thung","doi":"10.1112/tlm3.12026","DOIUrl":null,"url":null,"abstract":"We study symmetry properties of quaternionic Kähler manifolds obtained by the HK/QK correspondence. To any Lie algebra g of infinitesimal automorphisms of the initial hyper‐Kähler data, we associate a central extension of g , acting by infinitesimal automorphisms of the resulting quaternionic Kähler manifold. More specifically, we study the metrics obtained by the one‐loop deformation of the c ‐map construction, proving that the Lie algebra of infinitesimal automorphisms of the initial projective special Kähler manifold gives rise to a Lie algebra of Killing fields of the corresponding one‐loop deformed c ‐map space. As an application, we show that this construction increases the cohomogeneity of the automorphism groups by at most one. In particular, if the initial manifold is homogeneous, then the one‐loop deformed metric is of cohomogeneity at most one. As an example, we consider the one‐loop deformation of the symmetric quaternionic Kähler metric on SU(n,2)/S(U(n)×U(2)) , which we prove is of cohomogeneity exactly one. This family generalizes the so‐called universal hypermultiplet ( n=1 ), for which we determine the full isometry group.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

We study symmetry properties of quaternionic Kähler manifolds obtained by the HK/QK correspondence. To any Lie algebra g of infinitesimal automorphisms of the initial hyper‐Kähler data, we associate a central extension of g , acting by infinitesimal automorphisms of the resulting quaternionic Kähler manifold. More specifically, we study the metrics obtained by the one‐loop deformation of the c ‐map construction, proving that the Lie algebra of infinitesimal automorphisms of the initial projective special Kähler manifold gives rise to a Lie algebra of Killing fields of the corresponding one‐loop deformed c ‐map space. As an application, we show that this construction increases the cohomogeneity of the automorphism groups by at most one. In particular, if the initial manifold is homogeneous, then the one‐loop deformed metric is of cohomogeneity at most one. As an example, we consider the one‐loop deformation of the symmetric quaternionic Kähler metric on SU(n,2)/S(U(n)×U(2)) , which we prove is of cohomogeneity exactly one. This family generalizes the so‐called universal hypermultiplet ( n=1 ), for which we determine the full isometry group.
S1 -对称的四元数Kähler流形的对称性
研究了由HK/QK对应得到的四元数Kähler流形的对称性。对于初始超Kähler数据的无穷小自同构的任意李代数g,我们关联了一个g的中心扩展,它由所得到的四元数Kähler流形的无穷小自同构作用。更具体地说,我们研究了由c -映射构造的一环变形得到的度量,证明了初始射影特殊Kähler流形的无限小自同构的李代数可以得到相应的一环变形c -映射空间的杀域的李代数。作为应用,我们证明了这种构造使自同构群的同质性最多增加了1。特别地,如果初始流形是齐次的,那么单环变形度量最多是齐次的。作为一个例子,我们考虑了SU(n,2)/S(U(n)×U(2))上对称四元数Kähler度量的一环变形,我们证明了它的同质性完全为1。这个族推广了所谓的通用超多群(n=1),我们确定了它的全等距群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信