On the derivatives of the integer-valued polynomials

Pub Date : 2018-10-17 DOI:10.7169/facm/1786
Bakir Farhi
{"title":"On the derivatives of the integer-valued polynomials","authors":"Bakir Farhi","doi":"10.7169/facm/1786","DOIUrl":null,"url":null,"abstract":"In this paper, we study the derivatives of an integer-valued polynomial of a given degree. Denoting by $E_n$ the set of the integer-valued polynomials with degree $\\leq n$, we show that the smallest positive integer $c_n$ satisfying the property: $\\forall P \\in E_n, c_n P' \\in E_n$ is $c_n = \\mathrm{lcm}(1 , 2 , \\dots , n)$. As an application, we deduce an easy proof of the well-known inequality $\\mathrm{lcm}(1 , 2 , \\dots , n) \\geq 2^{n - 1}$ ($\\forall n \\geq 1$). In the second part of the paper, we generalize our result for the derivative of a given order $k$ and then we give two divisibility properties for the obtained numbers $c_{n , k}$ (generalizing the $c_n$'s). Leaning on this study, we conclude the paper by determining, for a given natural number $n$, the smallest positive integer $\\lambda_n$ satisfying the property: $\\forall P \\in E_n$, $\\forall k \\in \\mathbb{N}$: $\\lambda_n P^{(k)} \\in E_n$. In particular, we show that: $\\lambda_n = \\prod_{p \\text{ prime}} p^{\\lfloor\\frac{n}{p}\\rfloor}$ ($\\forall n \\in \\mathbb{N}$).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study the derivatives of an integer-valued polynomial of a given degree. Denoting by $E_n$ the set of the integer-valued polynomials with degree $\leq n$, we show that the smallest positive integer $c_n$ satisfying the property: $\forall P \in E_n, c_n P' \in E_n$ is $c_n = \mathrm{lcm}(1 , 2 , \dots , n)$. As an application, we deduce an easy proof of the well-known inequality $\mathrm{lcm}(1 , 2 , \dots , n) \geq 2^{n - 1}$ ($\forall n \geq 1$). In the second part of the paper, we generalize our result for the derivative of a given order $k$ and then we give two divisibility properties for the obtained numbers $c_{n , k}$ (generalizing the $c_n$'s). Leaning on this study, we conclude the paper by determining, for a given natural number $n$, the smallest positive integer $\lambda_n$ satisfying the property: $\forall P \in E_n$, $\forall k \in \mathbb{N}$: $\lambda_n P^{(k)} \in E_n$. In particular, we show that: $\lambda_n = \prod_{p \text{ prime}} p^{\lfloor\frac{n}{p}\rfloor}$ ($\forall n \in \mathbb{N}$).
分享
查看原文
关于整数值多项式的导数
本文研究了给定阶的整数值多项式的导数。用$E_n$表示次为$\leq n$的整值多项式的集合,我们证明了满足性质$\forall P \in E_n, c_n P' \in E_n$的最小正整数$c_n$是$c_n = \mathrm{lcm}(1 , 2 , \dots , n)$。作为一个应用,我们推导出了一个众所周知的不等式$\mathrm{lcm}(1 , 2 , \dots , n) \geq 2^{n - 1}$ ($\forall n \geq 1$)的简单证明。在论文的第二部分,我们推广了给定阶导数$k$的结果,然后给出了所得数$c_{n , k}$的两个可整除性质(推广了$c_n$的性质)。根据这一研究,我们通过确定给定自然数$n$满足性质:$\forall P \in E_n$, $\forall k \in \mathbb{N}$: $\lambda_n P^{(k)} \in E_n$的最小正整数$\lambda_n$来总结本文。特别地,我们显示:$\lambda_n = \prod_{p \text{ prime}} p^{\lfloor\frac{n}{p}\rfloor}$ ($\forall n \in \mathbb{N}$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信