Diagnosis of Lung Disorder Using Immune Genetic Algorithm and Fuzzy logic to Handle Incertitude

Pandithurai Othiyappan
{"title":"Diagnosis of Lung Disorder Using Immune Genetic Algorithm and Fuzzy logic to Handle Incertitude","authors":"Pandithurai Othiyappan","doi":"10.25027/AGJ2017.28.V28I4.100","DOIUrl":null,"url":null,"abstract":"In this paper, we present an immune based fuzzy-logic approach for computer-aided diagnosis scheme in medical imaging. The scheme applies to lung CT images and to detect and classify lung nodules. Classification of lung tissue is a significant and challenging task in any computer aided diagnosis system. This paper presents a technique for classification of lung tissue from computed tomography of the lung using the Gaussian interval type-2 fuzzy logic system. The type-2 Gaussian membership functions (T2MFs) and their footprint of uncertainty (FOU) are tuned by immune, genetic algorithm, which is the combination of immune genetic algorithm (GA) and local exploration operator. An immune, genetic algorithm estimates the parameters of the type-2 fuzzy membership function (T2MF). By using immune, genetic algorithm, converging speed is increased. The proposed local exploration operator helps in finding the best Gaussian distribution curve of a particular feature which improves the efficiency and accuracy of the diagnosis system.","PeriodicalId":53261,"journal":{"name":"Acta Graphica","volume":"28 1","pages":"129-136"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Graphica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25027/AGJ2017.28.V28I4.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present an immune based fuzzy-logic approach for computer-aided diagnosis scheme in medical imaging. The scheme applies to lung CT images and to detect and classify lung nodules. Classification of lung tissue is a significant and challenging task in any computer aided diagnosis system. This paper presents a technique for classification of lung tissue from computed tomography of the lung using the Gaussian interval type-2 fuzzy logic system. The type-2 Gaussian membership functions (T2MFs) and their footprint of uncertainty (FOU) are tuned by immune, genetic algorithm, which is the combination of immune genetic algorithm (GA) and local exploration operator. An immune, genetic algorithm estimates the parameters of the type-2 fuzzy membership function (T2MF). By using immune, genetic algorithm, converging speed is increased. The proposed local exploration operator helps in finding the best Gaussian distribution curve of a particular feature which improves the efficiency and accuracy of the diagnosis system.
应用免疫遗传算法和模糊逻辑处理不确定性对肺部疾病的诊断
本文提出了一种基于免疫的医学影像计算机辅助诊断模糊逻辑方法。该方案适用于肺部CT图像,用于肺结节的检测和分类。在任何计算机辅助诊断系统中,肺组织的分类都是一项重要而富有挑战性的任务。本文提出了一种利用高斯区间2型模糊逻辑系统对肺组织进行分类的方法。利用免疫遗传算法(GA)和局部探索算子相结合的方法,对2型高斯隶属函数(t2mf)及其不确定性足迹(FOU)进行了优化。采用免疫遗传算法对2型模糊隶属函数(T2MF)的参数进行估计。采用免疫遗传算法,提高了收敛速度。提出的局部勘探算子有助于找到特定特征的最佳高斯分布曲线,从而提高了诊断系统的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信