Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series

Pub Date : 2019-07-19 DOI:10.3934/JMD.2021002
M. Laurent, A. Nogueira
{"title":"Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series","authors":"M. Laurent, A. Nogueira","doi":"10.3934/JMD.2021002","DOIUrl":null,"url":null,"abstract":"Let $f : [0,1)\\rightarrow [0,1)$ be a $2$-interval piecewise affine increasing map which is injective but not surjective. Such a map $f$ has a rotation number and can be parametrized by three real numbers. We make fully explicit the dynamics of $f$ thanks to two specific functions $\\delta$ and $\\phi$ depending on these parameters whose definitions involve Hecke-Mahler series. As an application, we show that the rotation number of $f$ is rational, when the three parameters are algebraic numbers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2021002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let $f : [0,1)\rightarrow [0,1)$ be a $2$-interval piecewise affine increasing map which is injective but not surjective. Such a map $f$ has a rotation number and can be parametrized by three real numbers. We make fully explicit the dynamics of $f$ thanks to two specific functions $\delta$ and $\phi$ depending on these parameters whose definitions involve Hecke-Mahler series. As an application, we show that the rotation number of $f$ is rational, when the three parameters are algebraic numbers.
分享
查看原文
2区间分段仿射映射动力学与Hecke-Mahler级数
设$f : [0,1)\rightarrow [0,1)$为一个$2$ -区间分段仿射递增映射,它是内射但不是满射。这样的映射$f$有一个旋转数,可以用三个实数参数化。我们充分明确了$f$的动态,这要归功于两个特定的函数$\delta$和$\phi$,这取决于这些参数的定义涉及Hecke-Mahler系列。作为应用,我们证明了当三个参数为代数数时,$f$的旋转数是有理数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信