{"title":"Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series","authors":"M. Laurent, A. Nogueira","doi":"10.3934/JMD.2021002","DOIUrl":null,"url":null,"abstract":"Let $f : [0,1)\\rightarrow [0,1)$ be a $2$-interval piecewise affine increasing map which is injective but not surjective. Such a map $f$ has a rotation number and can be parametrized by three real numbers. We make fully explicit the dynamics of $f$ thanks to two specific functions $\\delta$ and $\\phi$ depending on these parameters whose definitions involve Hecke-Mahler series. As an application, we show that the rotation number of $f$ is rational, when the three parameters are algebraic numbers.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2021002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
Let $f : [0,1)\rightarrow [0,1)$ be a $2$-interval piecewise affine increasing map which is injective but not surjective. Such a map $f$ has a rotation number and can be parametrized by three real numbers. We make fully explicit the dynamics of $f$ thanks to two specific functions $\delta$ and $\phi$ depending on these parameters whose definitions involve Hecke-Mahler series. As an application, we show that the rotation number of $f$ is rational, when the three parameters are algebraic numbers.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.