Regular left-orders on groups

IF 0.6 2区 数学 Q3 MATHEMATICS
Y. Antol'in, C. Rivas, H. Su
{"title":"Regular left-orders on groups","authors":"Y. Antol'in, C. Rivas, H. Su","doi":"10.4171/jca/64","DOIUrl":null,"url":null,"abstract":"A regular left-order on a finitely generated group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and we give a classification of the groups whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag-Solitar group B(1, n) admits a regular left-order if and only if n ≥ −1. Finally, Hermiller and S̆unić showed that no free product admits a regular left-order. We show that if A and B are groups with regular left-orders, then (A ∗B)× Z admits a regular left-order. MSC 2020 classification: 06F15, 20F60, 68Q45","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/64","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

A regular left-order on a finitely generated group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and we give a classification of the groups whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag-Solitar group B(1, n) admits a regular left-order if and only if n ≥ −1. Finally, Hermiller and S̆unić showed that no free product admits a regular left-order. We show that if A and B are groups with regular left-orders, then (A ∗B)× Z admits a regular left-order. MSC 2020 classification: 06F15, 20F60, 68Q45
组上的常规左订单
有限生成群G上的正则左阶是G上的全左乘不变阶,其对应的正锥是正则语言在群的生成集上在评价映射下的像。证明了承认正则左序在扩张和环积下是稳定的,并给出了左序都是正则左序的群的分类。此外,我们证明了可解的Baumslag-Solitar群B(1, n)存在正则左序当且仅当n≥- 1。最后,Hermiller和S ? uniki证明了自由产品不存在规则的左序。证明了如果A和B是正则左序群,则(A * B)× Z承认正则左序。MSC 2020分类:06F15, 20F60, 68Q45
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信