Gluing constructions for Lorentzian length spaces.

Pub Date : 2024-01-01 Epub Date: 2023-03-24 DOI:10.1007/s00229-023-01469-4
Tobias Beran, Felix Rott
{"title":"Gluing constructions for Lorentzian length spaces.","authors":"Tobias Beran, Felix Rott","doi":"10.1007/s00229-023-01469-4","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an analogue to the amalgamation of metric spaces into the setting of Lorentzian pre-length spaces. This provides a very general process of constructing new spaces out of old ones. The main application in this work is an analogue of the gluing theorem of Reshetnyak for CAT(<i>k</i>) spaces, which roughly states that gluing is compatible with upper curvature bounds. Due to the absence of a notion of spacelike distance in Lorentzian pre-length spaces we can only formulate the theorem in terms of (strongly causal) spacetimes viewed as Lorentzian length spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764570/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01469-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce an analogue to the amalgamation of metric spaces into the setting of Lorentzian pre-length spaces. This provides a very general process of constructing new spaces out of old ones. The main application in this work is an analogue of the gluing theorem of Reshetnyak for CAT(k) spaces, which roughly states that gluing is compatible with upper curvature bounds. Due to the absence of a notion of spacelike distance in Lorentzian pre-length spaces we can only formulate the theorem in terms of (strongly causal) spacetimes viewed as Lorentzian length spaces.

Abstract Image

分享
查看原文
洛伦兹长度空间的胶合构造
我们将度量空间的合并引入洛伦兹前长空间。这为从旧空间构造新空间提供了一个非常普遍的过程。这项工作的主要应用是雷舍特尼亚克(Reshetnyak)关于 CAT(k) 空间的胶合定理的类比,该定理大致说明胶合与上曲率约束是兼容的。由于洛伦兹前长度空间中缺乏类似空间距离的概念,我们只能用被视为洛伦兹长度空间的(强因果)时空来表述该定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信