{"title":"Tensor product P-splines using a sparse mixed model formulation","authors":"M. Boer","doi":"10.1177/1471082x231178591","DOIUrl":null,"url":null,"abstract":"A new approach to represent P-splines as a mixed model is presented. The corresponding matrices are sparse allowing the new approach can find the optimal values of the penalty parameters in a computationally efficient manner. Whereas the new mixed model P-splines formulation is similar to the original P-splines, a key difference is that the fixed effects are modelled explicitly, and extra constraints are added to the random part of the model. An important feature ensuring that the entire computation is fast is a sparse implementation of the Automated Differentiation of the Cholesky algorithm. It is shown by means of two examples that the new approach is fast compared to existing methods. The methodology has been implemented in the R-package LMMsolver available on CRAN ( https://CRAN.R-project.org/package=LMMsolver ).","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231178591","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
A new approach to represent P-splines as a mixed model is presented. The corresponding matrices are sparse allowing the new approach can find the optimal values of the penalty parameters in a computationally efficient manner. Whereas the new mixed model P-splines formulation is similar to the original P-splines, a key difference is that the fixed effects are modelled explicitly, and extra constraints are added to the random part of the model. An important feature ensuring that the entire computation is fast is a sparse implementation of the Automated Differentiation of the Cholesky algorithm. It is shown by means of two examples that the new approach is fast compared to existing methods. The methodology has been implemented in the R-package LMMsolver available on CRAN ( https://CRAN.R-project.org/package=LMMsolver ).
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.