Equivariant K-Theory Approach to $\imath$-Quantum Groups

IF 1.1 2区 数学 Q1 MATHEMATICS
Zhaobing Fan, Haitao Ma, H. Xiao
{"title":"Equivariant K-Theory Approach to $\\imath$-Quantum Groups","authors":"Zhaobing Fan, Haitao Ma, H. Xiao","doi":"10.4171/prims/58-3-6","DOIUrl":null,"url":null,"abstract":"Various constructions for quantum groups have been generalized to $\\imath$-quantum groups. Such generalization is called $\\imath$-program. In this paper, we fill one of parts in the $\\imath$-program. Namely, we provide an equivariant K-theory approach to $\\imath$-quantum groups associated to the Satake diagram in \\eqref{eq1}, which is the Langlands dual picture of that constructed in \\cite{BKLW14}, where a geometric realization of the $\\imath$-quantum group is provided by using perverse sheaves. As an application of the main results, we prove Li's conjecture \\cite{L18} for the special cases with the satake diagram in \\eqref{eq1}.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/58-3-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Various constructions for quantum groups have been generalized to $\imath$-quantum groups. Such generalization is called $\imath$-program. In this paper, we fill one of parts in the $\imath$-program. Namely, we provide an equivariant K-theory approach to $\imath$-quantum groups associated to the Satake diagram in \eqref{eq1}, which is the Langlands dual picture of that constructed in \cite{BKLW14}, where a geometric realization of the $\imath$-quantum group is provided by using perverse sheaves. As an application of the main results, we prove Li's conjecture \cite{L18} for the special cases with the satake diagram in \eqref{eq1}.
$\imath$-量子群的等变K-理论方法
量子群的各种构造已经被推广到$\imath$-量子群。这种泛化被称为$\imath$-程序。在本文中,我们填充$\imath$-程序中的一个部分。也就是说,我们为与\eqref{eq1}中的Satake图相关的$\imath$-量子群提供了一种等变K-理论方法,该图是在\cite{BKLW14}中构建的Langlands对偶图,其中通过使用反常槽来提供$\imath$-量子组的几何实现。作为主要结果的一个应用,我们用satake图证明了李关于特例的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信