Boundedness of Fractional Integrals on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

Pub Date : 2022-06-13 DOI:10.3836/tjm/1502179390
Yiqun Chen, H. Jia, Dachun Yang
{"title":"Boundedness of Fractional Integrals on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces","authors":"Yiqun Chen, H. Jia, Dachun Yang","doi":"10.3836/tjm/1502179390","DOIUrl":null,"url":null,"abstract":"Let $X$ be a ball quasi-Banach function space on ${\\mathbb R}^n$ and $H_X({\\mathbb R}^n)$ the Hardy space associated with $X$, and let $\\alpha\\in(0,n)$ and $\\beta\\in(1,\\infty)$. In this article, assuming that the (powered) Hardy--Littlewood maximal operator satisfies the Fefferman--Stein vector-valued maximal inequality on $X$ and is bounded on the associate space of $X$, the authors prove that the fractional integral $I_{\\alpha}$ can be extended to a bounded linear operator from $H_X({\\mathbb R}^n)$ to $H_{X^{\\beta}}({\\mathbb R}^n)$ if and only if there exists a positive constant $C$ such that, for any ball $B\\subset \\mathbb{R}^n$, $|B|^{\\frac{\\alpha}{n}}\\leq C \\|\\mathbf{1}_B\\|_X^{\\frac{\\beta-1}{\\beta}}$, where $X^{\\beta}$ denotes the $\\beta$-convexification of $X$. Moreover, under some different reasonable assumptions on both $X$ and another ball quasi-Banach function space $Y$, the authors also consider the mapping property of $I_{\\alpha}$ from $H_X({\\mathbb R}^n)$ to $H_Y({\\mathbb R}^n)$ via using the extrapolation theorem. All these results have a wide range of applications. Particularly, when these are applied, respectively, to Morrey spaces, mixed-norm Lebesgue spaces, local generalized Herz spaces, and mixed-norm Herz spaces, all these results are new. The proofs of these theorems strongly depend on atomic and molecular characterizations of $H_X({\\mathbb R}^n)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let $X$ be a ball quasi-Banach function space on ${\mathbb R}^n$ and $H_X({\mathbb R}^n)$ the Hardy space associated with $X$, and let $\alpha\in(0,n)$ and $\beta\in(1,\infty)$. In this article, assuming that the (powered) Hardy--Littlewood maximal operator satisfies the Fefferman--Stein vector-valued maximal inequality on $X$ and is bounded on the associate space of $X$, the authors prove that the fractional integral $I_{\alpha}$ can be extended to a bounded linear operator from $H_X({\mathbb R}^n)$ to $H_{X^{\beta}}({\mathbb R}^n)$ if and only if there exists a positive constant $C$ such that, for any ball $B\subset \mathbb{R}^n$, $|B|^{\frac{\alpha}{n}}\leq C \|\mathbf{1}_B\|_X^{\frac{\beta-1}{\beta}}$, where $X^{\beta}$ denotes the $\beta$-convexification of $X$. Moreover, under some different reasonable assumptions on both $X$ and another ball quasi-Banach function space $Y$, the authors also consider the mapping property of $I_{\alpha}$ from $H_X({\mathbb R}^n)$ to $H_Y({\mathbb R}^n)$ via using the extrapolation theorem. All these results have a wide range of applications. Particularly, when these are applied, respectively, to Morrey spaces, mixed-norm Lebesgue spaces, local generalized Herz spaces, and mixed-norm Herz spaces, all these results are new. The proofs of these theorems strongly depend on atomic and molecular characterizations of $H_X({\mathbb R}^n)$.
分享
查看原文
与球拟Banach函数空间相关的Hardy空间上分数积分的有界性
设$X$为与$X$相关的Hardy空间${\mathbb R}^n$和$H_X({\mathbb R}^n)$上的球拟巴拿赫函数空间,设$\alpha\in(0,n)$和$\beta\in(1,\infty)$。在本文中,假设(幂)Hardy—Littlewood极大算子满足$X$上的Fefferman—Stein向量值极大不等式,并且在$X$的关联空间上是有界的,证明分数积分$I_{\alpha}$可以推广为一个从$H_X({\mathbb R}^n)$到$H_{X^{\beta}}({\mathbb R}^n)$的有界线性算子,当且仅当存在一个正常数$C$,使得对于任意球$B\subset \mathbb{R}^n$,$|B|^{\frac{\alpha}{n}}\leq C \|\mathbf{1}_B\|_X^{\frac{\beta-1}{\beta}}$,其中$X^{\beta}$表示$X$的$\beta$ -凸度。此外,在$X$和另一个球拟巴拿赫函数空间$Y$上的一些不同的合理假设下,作者还利用外推定理考虑了$I_{\alpha}$从$H_X({\mathbb R}^n)$到$H_Y({\mathbb R}^n)$的映射性质。这些结果具有广泛的应用前景。特别地,当这些结果分别应用于Morrey空间、混合范数Lebesgue空间、局部广义Herz空间和混合范数Herz空间时,这些结果都是新的。这些定理的证明强烈依赖于$H_X({\mathbb R}^n)$的原子和分子表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信