Comparing Finite-Time Lyapunov Exponents and Lagrangian Descriptors for identifying phase space structures in a simple two-dimensional, time-periodic double-gyre model

Timothy R. Getscher
{"title":"Comparing Finite-Time Lyapunov Exponents and Lagrangian Descriptors for identifying phase space structures in a simple two-dimensional, time-periodic double-gyre model","authors":"Timothy R. Getscher","doi":"10.1137/20S137208110.1137/20S1372081","DOIUrl":null,"url":null,"abstract":"This paper compares the advantages, limitations, and computational considerations of using Finite-Time Lyapunov Exponents (FTLEs) and Lagrangian Descriptors (LDs) as tools for identifying barriers and mechanisms of fluid transport in two-dimensional time-periodic flows. These barriers and mechanisms of transport are often referred to as \"Lagrangian Coherent Structures,\" though this term often changes meaning depending on the author or context. This paper will specifically focus on using FTLEs and LDs to identify stable and unstable manifolds of hyperbolic stagnation points, and the Kolmogorov-Arnold-Moser (KAM) tori associated with elliptic stagnation points. The background and theory behind both methods and their associated phase space structures will be presented, and then examples of FTLEs and LDs will be shown based on a simple, periodic, time-dependent double-gyre toy model with varying parameters.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20S137208110.1137/20S1372081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares the advantages, limitations, and computational considerations of using Finite-Time Lyapunov Exponents (FTLEs) and Lagrangian Descriptors (LDs) as tools for identifying barriers and mechanisms of fluid transport in two-dimensional time-periodic flows. These barriers and mechanisms of transport are often referred to as "Lagrangian Coherent Structures," though this term often changes meaning depending on the author or context. This paper will specifically focus on using FTLEs and LDs to identify stable and unstable manifolds of hyperbolic stagnation points, and the Kolmogorov-Arnold-Moser (KAM) tori associated with elliptic stagnation points. The background and theory behind both methods and their associated phase space structures will be presented, and then examples of FTLEs and LDs will be shown based on a simple, periodic, time-dependent double-gyre toy model with varying parameters.
比较有限时间李雅普诺夫指数和拉格朗日描述符识别简单二维时间周期双环流模型中的相空间结构
本文比较了有限时间李雅普诺夫指数(FTLEs)和拉格朗日描述符(LDs)作为识别二维时间周期流动中流体输送障碍和机制的工具的优点、局限性和计算考虑。这些屏障和传输机制通常被称为“拉格朗日连贯结构”,尽管这个术语经常根据作者或上下文而改变含义。本文将特别关注使用fft和ld来识别双曲滞滞点的稳定和不稳定流形,以及与椭圆滞滞点相关的Kolmogorov-Arnold-Moser (KAM)环面。本文将介绍两种方法及其相关相空间结构的背景和理论,然后将基于一个简单的、周期性的、随时间变化的双涡旋模型展示FTLEs和ld的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信