Z. Arifin, S. Hadi, S. Suyitno, A. Prabowo, S. D. Prasetyo
{"title":"CHARACTERIZATION OF ZnO NANOFIBER ON DOUBLE-LAYER DYE-SENSITIZED SOLAR CELLS USING DIRECT DEPOSITION METHOD","authors":"Z. Arifin, S. Hadi, S. Suyitno, A. Prabowo, S. D. Prasetyo","doi":"10.52571/ptq.v17.n36.2020.278_periodico36_pgs_263_277.pdf","DOIUrl":null,"url":null,"abstract":"\nSolar cells are capable of harvesting energy by converting solar heat into electrical energy through the photovoltaic process. A type of solar cell, namely dye-sensitized solar cells (DSSCs) which based on doublelayer photoanode is attracting researchers and engineers considering its characteristics, e.g., high efficiency, low cost, and available mass-production. The TiO2-ZnO double-layer semiconductor can be obtained from a nanofiber ZnO semiconductor which is deposited with a TiO2 nanoparticle semiconductor. In this study, the direct deposition method was applied using an electrospinning machine. The intention is to directly capture the liquid of electro-jet spun from PVA/Zn(Ac)2 solution onto fluorine-doped tin oxide (FTO) glass. The glass itself is coated with a TiO2 nanoparticle semiconductor. The investigation was addressed to obtain the best tip distance to the collector and the best flow rate in the electrospinning process. The subject environment was designated on the manufacturing process of nanofiber ZnO semiconductors used as double-layer DSSC photoanodes. Variations in flow rates of 3, 4, 5, 6, 7, and 8 μL/minute were applied in the observation. Furthermore, collaboration with the tip to collector distances using a variation of 3, 4, 5, 6, 7, and 8 cm was also considered in this study. Based on these parameters, the effects of the electrospinning process on the morphology of the directly deposited ZnO nanofiber semiconductor were obtained. The results showed that a flow rate of 4 μL/minute and a tip distance to the collector of 8 cm produced a small diameter and uniform morphology. This morphology allowed ZnO nanofibers to have better color absorption and electron excitation. Thus, it was directly proportional to the high efficiency of double-layer DSSCs. The performance value for the 4 μL/min discharge was 2.39%, and the performance value for the 8 cm needle tip distance to the collector was 1.61%.\n","PeriodicalId":45103,"journal":{"name":"Periodico Tche Quimica","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Tche Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52571/ptq.v17.n36.2020.278_periodico36_pgs_263_277.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Solar cells are capable of harvesting energy by converting solar heat into electrical energy through the photovoltaic process. A type of solar cell, namely dye-sensitized solar cells (DSSCs) which based on doublelayer photoanode is attracting researchers and engineers considering its characteristics, e.g., high efficiency, low cost, and available mass-production. The TiO2-ZnO double-layer semiconductor can be obtained from a nanofiber ZnO semiconductor which is deposited with a TiO2 nanoparticle semiconductor. In this study, the direct deposition method was applied using an electrospinning machine. The intention is to directly capture the liquid of electro-jet spun from PVA/Zn(Ac)2 solution onto fluorine-doped tin oxide (FTO) glass. The glass itself is coated with a TiO2 nanoparticle semiconductor. The investigation was addressed to obtain the best tip distance to the collector and the best flow rate in the electrospinning process. The subject environment was designated on the manufacturing process of nanofiber ZnO semiconductors used as double-layer DSSC photoanodes. Variations in flow rates of 3, 4, 5, 6, 7, and 8 μL/minute were applied in the observation. Furthermore, collaboration with the tip to collector distances using a variation of 3, 4, 5, 6, 7, and 8 cm was also considered in this study. Based on these parameters, the effects of the electrospinning process on the morphology of the directly deposited ZnO nanofiber semiconductor were obtained. The results showed that a flow rate of 4 μL/minute and a tip distance to the collector of 8 cm produced a small diameter and uniform morphology. This morphology allowed ZnO nanofibers to have better color absorption and electron excitation. Thus, it was directly proportional to the high efficiency of double-layer DSSCs. The performance value for the 4 μL/min discharge was 2.39%, and the performance value for the 8 cm needle tip distance to the collector was 1.61%.
期刊介绍:
The Journal publishes original research papers, review articles, short communications (scientific publications), book reviews, forum articles, announcements or letters as well as interviews. Researchers from all countries are invited to publish on its pages.