{"title":"An $\\alpha$-number characterization of $L^p$ spaces on uniformly rectifiable sets","authors":"Jonas Azzam, Damian Dąbrowski","doi":"10.5565/PUBLMAT6722313","DOIUrl":null,"url":null,"abstract":"We give a characterization of $L^{p}(\\sigma)$ for uniformly rectifiable measures $\\sigma$ using Tolsa's $\\alpha$-numbers, by showing, for $1<p<\\infty$ and $f\\in L^{p}(\\sigma)$, that \r\n\\[ \r\n\\lVert f\\rVert_{L^{p}(\\sigma)}\\sim \\left\\lVert\\left(\\int_{0}^{\\infty} \\left(\\alpha_{f\\sigma}(x,r)+|f|_{x,r}\\alpha_{\\sigma}(x,r)\\right)^2\\ \\frac{dr}{r} \\right)^{\\frac{1}{2}}\\right\\rVert_{L^{p}(\\sigma)}. \r\n\\]","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6722313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We give a characterization of $L^{p}(\sigma)$ for uniformly rectifiable measures $\sigma$ using Tolsa's $\alpha$-numbers, by showing, for $1