Variations of central limit theorems and Stirling numbers of the first kind

IF 1 Q1 MATHEMATICS
B. Heim, M. Neuhauser
{"title":"Variations of central limit theorems and Stirling numbers of the first kind","authors":"B. Heim, M. Neuhauser","doi":"10.47443/dml.2022.183","DOIUrl":null,"url":null,"abstract":"We construct a new parametrization of double sequences $\\{A_{n,k}(s)\\}_{n,k}$ between $A_{n,k}(0)= \\binom{n-1}{k-1}$ and $A_{n,k}(1)= \\frac{1}{n!}\\stirl{n}{k}$, where $\\stirl{n}{k}$ are the unsigned Stirling numbers of the first kind. For each $s$ we prove a central limit theorem and a local limit theorem. This extends the de\\,Moivre--Laplace central limit theorem and Goncharov's result, that unsigned Stirling numbers of the first kind are asymptotically normal. Herewith, we provide several applications.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a new parametrization of double sequences $\{A_{n,k}(s)\}_{n,k}$ between $A_{n,k}(0)= \binom{n-1}{k-1}$ and $A_{n,k}(1)= \frac{1}{n!}\stirl{n}{k}$, where $\stirl{n}{k}$ are the unsigned Stirling numbers of the first kind. For each $s$ we prove a central limit theorem and a local limit theorem. This extends the de\,Moivre--Laplace central limit theorem and Goncharov's result, that unsigned Stirling numbers of the first kind are asymptotically normal. Herewith, we provide several applications.
中心极限定理与第一类Stirling数的变化
我们构造了$a_{n,k}(0)=\binom{n-1}{k-1}$和$a_(n,k)(1)=\frac{1}{n!}\strl{n}{k}$之间的双序列$\。对于每个$s$,我们证明了一个中心极限定理和一个局部极限定理。这推广了de,Moivre-Laplace中心极限定理和Goncharov的结果,即第一类无符号Stirling数是渐近正态的。在此,我们提供了几个应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信