Reproducing kernels of Sobolev–Slobodeckij̆ spaces via Green’s kernel approach: Theory and applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
H. Mohebalizadeh, G. Fasshauer, H. Adibi
{"title":"Reproducing kernels of Sobolev–Slobodeckij̆ spaces via Green’s kernel approach: Theory and applications","authors":"H. Mohebalizadeh, G. Fasshauer, H. Adibi","doi":"10.1142/s0219530523500112","DOIUrl":null,"url":null,"abstract":"This paper extends the work of Fasshauer and Ye [Reproducing kernels of Sobolev spaces via a Green kernel approach with differential operators and boundary operators, Adv. Comput. Math. 38(4) (2011) 891921] in two different ways, namely, new kernels and associated native spaces are identified as crucial Hilbert spaces in applied mathematics. These spaces include the following spaces defined in bounded domains [Formula: see text] with smooth boundary: homogeneous Sobolev–Slobodeckij̆ spaces, denoted by [Formula: see text], and Sobolev–Slobodeckij̆ spaces, denoted by [Formula: see text], where [Formula: see text]. Our goal is accomplished by obtaining the Green’s solutions of equations involving the fractional Laplacian and fractional differential operators defined through interpolation theory. We provide a proof that the Green’s kernels satisfying these problems are symmetric and positive definite reproducing kernels of [Formula: see text] and [Formula: see text], respectively. Constructing kernels in these two ways enables the characterization of functions in native spaces based on their regularity. The Galerkin/collocation method, based on these kernels, is employed to solve various fractional problems, offering explicit or simplified calculations and efficient solutions. This method yields improved results with reduced computational costs, making it suitable for complex domains.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530523500112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the work of Fasshauer and Ye [Reproducing kernels of Sobolev spaces via a Green kernel approach with differential operators and boundary operators, Adv. Comput. Math. 38(4) (2011) 891921] in two different ways, namely, new kernels and associated native spaces are identified as crucial Hilbert spaces in applied mathematics. These spaces include the following spaces defined in bounded domains [Formula: see text] with smooth boundary: homogeneous Sobolev–Slobodeckij̆ spaces, denoted by [Formula: see text], and Sobolev–Slobodeckij̆ spaces, denoted by [Formula: see text], where [Formula: see text]. Our goal is accomplished by obtaining the Green’s solutions of equations involving the fractional Laplacian and fractional differential operators defined through interpolation theory. We provide a proof that the Green’s kernels satisfying these problems are symmetric and positive definite reproducing kernels of [Formula: see text] and [Formula: see text], respectively. Constructing kernels in these two ways enables the characterization of functions in native spaces based on their regularity. The Galerkin/collocation method, based on these kernels, is employed to solve various fractional problems, offering explicit or simplified calculations and efficient solutions. This method yields improved results with reduced computational costs, making it suitable for complex domains.
用Green核方法再现Sobolev–Slobodeckij̆空间的核:理论与应用
本文以两种不同的方式扩展了Fasshauer和Ye的工作[通过带有微分算子和边界算子的Green核方法再现Sobolev空间的核,Adv.Comput.Math.38(4)(2011)891921],即新核和相关的原生空间被确定为应用数学中的关键Hilbert空间。这些空间包括以下定义在具有光滑边界的有界域[公式:见文本]中的空间:齐次Sobolev–Slobodeckij̆空间,由[公式:见图文本]表示,以及Sobolev-Slobodeckikĭ;空间(由[公式:见文本]表示),其中[公式:参见文本]。我们的目标是通过获得通过插值理论定义的包含分数拉普拉斯算子和分数微分算子的方程的格林解来实现的。我们提供了一个证明,满足这些问题的格林核分别是[公式:见正文]和[公式:看正文]的对称和正定再生核。以这两种方式构造核使得能够基于函数的正则性来表征原生空间中的函数。基于这些核的Galerkin/配置方法被用于求解各种分数问题,提供了显式或简化的计算和有效的解。这种方法在降低计算成本的情况下产生了改进的结果,使其适用于复杂领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信