Laplacian spectrum of comaximal graph of the ring ℤn

IF 0.8 Q2 MATHEMATICS
Subarsha Banerjee
{"title":"Laplacian spectrum of comaximal graph of the ring ℤn","authors":"Subarsha Banerjee","doi":"10.1515/spma-2022-0163","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the interplay between the structural and spectral properties of the comaximal graph Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) of the ring Zn{{\\mathbb{Z}}}_{n} for n>2n\\gt 2. We first determine the structure of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) and deduce some of its properties. We then use the structure of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) to deduce the Laplacian eigenvalues of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) for various nn. We show that Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) is Laplacian integral for n=pαqβn={p}^{\\alpha }{q}^{\\beta }, where p,qp,q are primes and α,β\\alpha ,\\beta are non-negative integers and hence calculate the number of spanning trees of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) for n=pαqβn={p}^{\\alpha }{q}^{\\beta }. The algebraic and vertex connectivity of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) have been shown to be equal for all nn. An upper bound on the second largest Laplacian eigenvalue of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}) has been obtained, and a necessary and sufficient condition for its equality has also been determined. Finally, we discuss the multiplicity of the Laplacian spectral radius and the multiplicity of the algebraic connectivity of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}). We then investigate some properties and vertex connectivity of an induced subgraph of Γ(Zn)\\Gamma \\left({{\\mathbb{Z}}}_{n}). Some problems have been discussed at the end of this paper for further research.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"285 - 298"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this paper, we study the interplay between the structural and spectral properties of the comaximal graph Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) of the ring Zn{{\mathbb{Z}}}_{n} for n>2n\gt 2. We first determine the structure of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) and deduce some of its properties. We then use the structure of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) to deduce the Laplacian eigenvalues of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) for various nn. We show that Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) is Laplacian integral for n=pαqβn={p}^{\alpha }{q}^{\beta }, where p,qp,q are primes and α,β\alpha ,\beta are non-negative integers and hence calculate the number of spanning trees of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) for n=pαqβn={p}^{\alpha }{q}^{\beta }. The algebraic and vertex connectivity of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) have been shown to be equal for all nn. An upper bound on the second largest Laplacian eigenvalue of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}) has been obtained, and a necessary and sufficient condition for its equality has also been determined. Finally, we discuss the multiplicity of the Laplacian spectral radius and the multiplicity of the algebraic connectivity of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}). We then investigate some properties and vertex connectivity of an induced subgraph of Γ(Zn)\Gamma \left({{\mathbb{Z}}}_{n}). Some problems have been discussed at the end of this paper for further research.
环的共模图的拉普拉斯谱ℤn
摘要在本文中,我们研究了环Zn{\mathbb{Z}}_{n}的共模图Γ(Zn)\Gamma\left({\math bb{Z})的结构和谱性质之间的相互作用。我们首先确定Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n})的结构,并推导出它的一些性质。然后,我们使用Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n}。我们证明了Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n})是n=pαqβn={p}^{\alpha}{q}^}β}的拉普拉斯积分,其中p,qp,q是素数,α,β\alpha,β是非负整数,因此计算了n=pαqβn={p}^{\alpha}{q}^{β}的Γ。Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n})的代数连通性和顶点连通性已被证明对所有nn都是相等的。得到Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n})的第二大拉普拉斯特征值的上界,并确定了其相等的一个充要条件。最后,我们讨论了Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n})的拉普拉斯谱半径的多重性和代数连通性的多重性。然后,我们研究了Γ(Zn)\Gamma\left({{\mathbb{Z}}}_{n})的诱导子图的一些性质和顶点连通性。本文最后对一些问题进行了讨论,以供进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信